精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在RtABC中,∠C90°,以BC為直徑的⊙OAB于點D,切線DEAC于點E

1)求證:∠A=∠ADE

2)若AD8,DE5,求BC的長.

【答案】1)見解析;(2BC

【解析】

1)只要證明∠A+B90°,∠ADE+B90°即可解決問題;

2)首先證明AC2DE10,在RtADC中,DC6,設BDx,在RtBDC中,BC2x2+62,在RtABC中,BC2=(x+82102,可得x2+62=(x+82102,解方程即可解決問題.

1)證明:連接OD,

DE是切線,

∴∠ODE90°,

∴∠ADE+BDO90°,

∵∠ACB90°

∴∠A+B90°,

ODOB,

∴∠B=∠BDO,

∴∠ADE=∠A

2)解:連接CD

∵∠ADE=∠A,

AEDE,

BC是⊙O的直徑,∠ACB90°,

EC是⊙O的切線,

EDEC,

AEEC,

DE5,

AC2DE10,

RtADC中,DC6,

BDx,在RtBDC中,BC2x2+62,在RtABC中,BC2=(x+82102,

x2+62=(x+82102,

解得x,

BC

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某商場準備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.

(1)求A、B型號衣服進價各是多少元?

(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現需降價處理,且經市場調查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:

(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出yx的函數關系式,并求出自變量x的取值范圍;

(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,BC=12,高AD=8,矩形EFGH的一邊GH在BC上,頂點E、F分別在AB、AC上,AD與EF交于點M.

(1)求證:;

(2)設EF=x,EH=y(tǒng),寫出y與x之間的函數表達式;

(3)設矩形EFGH的面積為S,求S與x之間的函數表達式,并寫出S的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:已知ABC中,AB5,BC3,AC4,PQAB,P點在AC上(與A、C不重合),QBC上.

1)當PQC的面積與四邊形PABQ的面積相等時,求CP的長;

2)當PQC的周長與四邊形PABQ的周長相等時,求CP的長;

3)試問:在AB上是否存在一點M,使得PQM為等腰直角三角形?若不存在,請簡要說明理由;若存在,請求出PQ的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸相交于A、B兩點,點A在點B左側,頂點在折線MPN上移動,它們的坐標分別為M(﹣1,4)、P3,4)、N3,1).若在拋物線移動過程中,點A橫坐標的最小值為﹣3,則ab+c的最小值是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為4,∠MDN90°,將∠MDN繞點D旋轉,其中DM邊分別與射線BA、直線AC交于E、Q兩點,DN邊與射線BC交于點F;連接EF,且EF與直線AC交于點P

1)如圖1,點E在線段AB上時,①求證:AECF;②求證:DP垂直平分EF

2)當AE1時,求PQ的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在長方形ABCD中,AB=12cm,BC=10cm,點PA出發(fā),沿A→B→C→D的路線運動,到D停止;點QD點出發(fā),沿D→C→B→A路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒lcm、2cm,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運動時間x(秒)的圖象.

(1)求出a值;

(2)設點P已行的路程為y1(cm),點Q還剩的路程為y2(cm),請分別求出改變速度后,y1、y2和運動時間x(秒)的關系式;

(3)P、Q兩點都在BC邊上,x為何值時P、Q兩點相距3cm?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】春秋旅行社為吸引市民組團去天水灣風景區(qū)旅游,推出了如下收費標準:

某單位組織員工去天水灣風景區(qū)旅游,共支付給春秋旅行社旅游費用27000元,請問該單位這次共有多少員工去天水灣風景區(qū)旅游?

查看答案和解析>>

同步練習冊答案