【題目】如圖,已知二次函數(shù)y=ax2+bx+3 的圖象與x軸分別交于A(1,0),B(3,0)兩點,與y軸交于點C
(1)求此二次函數(shù)解析式;
(2)點D為拋物線的頂點,試判斷△BCD的形狀,并說明理由;
(3)將直線BC向上平移t(t>0)個單位,平移后的直線與拋物線交于M,N兩點(點M在y軸的右側),當△AMN為直角三角形時,求t的值.
【答案】(1);(2)△BCD為直角三角形,理由見解析;(3)當△AMN為直角三角形時,t的值為1或4.
【解析】
(1)根據(jù)點A、B的坐標,利用待定系數(shù)法即可求出二次函數(shù)解析式;
(2)利用配方法及二次函數(shù)圖象上點的坐標特征,可求出點C、D的坐標,利用兩點間的距離公式可求出CD、BD、BC的長,由勾股定理的逆定理可證出△BCD為直角三角形;
(3)根據(jù)點B、C的坐標,利用待定系數(shù)法可求出直線BC的解析式,進而可找出平移后直線的解析式,聯(lián)立兩函數(shù)解析式成方程組,通過解方程組可找出點M、N的坐標,利用兩點間的距離公式可求出AM2、AN2、MN2的值,分別令三個角為直角,利用勾股定理可得出關于t的無理方程,解之即可得出結論.
(1)將、代入,得:
,解得:,
此二次函數(shù)解析式為.
(2)為直角三角形,理由如下:
,
頂點的坐標為.
當時,,
點的坐標為.
點的坐標為,
,
,
.
,
,
為直角三角形.
(3)設直線的解析式為,
將,代入,得:
,解得:,
直線的解析式為,
將直線向上平移個單位得到的直線的解析式為.
聯(lián)立新直線與拋物線的解析式成方程組,得:,
解得:,,
點的坐標為,,點的坐標為,.
點的坐標為,
,,.
為直角三角形,
分三種情況考慮:
①當時,有,即,
整理,得:,
解得:,(不合題意,舍去);
②當時,有,即,
整理,得:,
解得:,(不合題意,舍去);
③當時,有,即,
整理,得:.
,
該方程無解(或解均為增解).
綜上所述:當為直角三角形時,的值為1或4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,小明將一張長為4、寬為3的矩形紙片沿對角線剪開,得到兩張三角形紙片(如圖2),將這兩張三角紙片擺成如圖3的形狀,但點B、C、F、D在同一條直線上,且點C與點F重合(在圖3至圖6中統(tǒng)一用點F表示).
小明在對這兩張三角形紙片進行如下操作時遇到了三個問題,請你幫助解決.
(1)將圖3中的△ABF沿BD向右平移到圖4中的位置,其中點B與點F 重合,請你求出平移的距離 ;
(2)在圖5中若∠GFD=60°,則圖3中的△ABF繞點 按 方向旋轉 到圖5的位置;
(3)將圖3中的△ABF沿直線AF翻折到圖6的位置,AB1交DE于點H,試問:△AEH和△HB1D的面積大小關系.說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司計劃從甲、乙兩種產品中選擇一種生產并銷售,每年產銷x件.已知產銷兩種產品的有關信息如表:
其中a為常數(shù),且5≤a≤7.
(1)若產銷甲、乙兩種產品的年利潤分別為萬元、萬元,直接寫出、與x的函數(shù)關系式;(注:年利潤=總售價﹣總成本﹣每年其他費用)
(2)分別求出產銷兩種產品的最大年利潤;
(3)為獲得最大年利潤,該公司應該選擇產銷哪種產品?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】24如圖,P是弧AB所對弦AB上一動點,過點P作PC⊥AB交弧AB于點C,取AP中點D,連接CD.已知AB=6cm,設A,P兩點間的距離為xcm,C.D兩點間的距離為ycm.(當點P與點A重合時,y的值為0;當點P與點B重合時,y的值為3)
小凡根據(jù)學習函數(shù)的經驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小凡的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 0 | 2.2 |
| 3.2 | 3.4 | 3.3 | 3 |
(2)建立平面直角坐標系,描出補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)結合所畫出的函數(shù)圖象,解決問題:當∠C=30°時,AP的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A,B兩點,點A的橫坐標是2,點B的縱坐標是-2.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)的圖象交于點A(﹣1,m),點B(n,﹣1).
(1)求反比例函數(shù)的解析式;
(2)當y1>y時,直接寫出x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點.
(1)求反比例函數(shù)的表達式和點B的坐標;
(2)P是第一象限內反比例函數(shù)圖象上一點,過點P作y軸的平行線,交直線AB于點C,連接PO,若△POC的面積為3,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,點P、Q分別在直線CB與射線DC上(點P不與點C、點B重合),且保持∠APQ=90°,CQ=1,則線段BP的長為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com