【題目】(1)如圖甲,點O在直線AB上,OC 平分∠AOD,∠BOD= 42°12′,求∠AOC的度數(shù).
(2)已知,如圖乙,B、C 兩點把線段AD 分成2:5:3三部分,M為AD的中點,BM=6cm,求CM和AD的長.
【答案】(1)68°54′;(2)4,20
【解析】
(1)根據(jù)題意找出這幾個角之間的關(guān)系,利用角平分線的性質(zhì)來求.
(2)由已知B,C兩點把線段AD分成2:5:3三部分,所以設(shè)AB=2xcm,BC=5xcm,CD=3xcm,根據(jù)已知分別用x表示出AD,MD,從而得出BM,繼而求出x,則求出CM和AD的長.
解:(1)∵∠AOB=180°,
∴∠AOD=180°-∠BOD=180°-42°12′=137°48′,
∵OC平分∠AOD,
∴∠AOC=∠AOD=×137°48′=68°54′.
(2)設(shè)AB=2xcm,BC=5xcm,CD=3xcm
∴AD=AB+BC+CD=10xcm
∵M是AD的中點
∴AM=MD=AD=5xcm
∴BM=AM-AB=5x-2x=3xcm
∵BM=6cm,
∴3x=6,x=2
故CM=MD-CD=5x-3x=2x=2×2=4cm,
AD=10x=10×2=20cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用三個同(1)圖的長方形和兩個同(2)圖的長方形用兩種方式去覆蓋一個大的長方形,兩種方式為覆蓋的部分(陰影部分)的周長一樣,那么(1)圖中長方形的面積與(2)圖長方形的面積的比是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=a.作BC邊的三等分點C1,使得CC1∶BC1=1∶2,過點C1作AC的平行線交AB于點A1,過點A1作BC的平行線交AC于點D1,作BC1邊的三等分點C2,使得C1C2∶BC2=1∶2,過點C2作AC的平行線交AB于點A2,過點A2作BC的平行線交A1C1于點D2;如此進行下去,則線段AnDn的長度為( )
A. aB. aC. aD. a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種水彩筆,在購買時,若同時額外購買筆芯,每個優(yōu)惠價為3元,使用期間,若備用筆芯不足時需另外購買,每個5元.現(xiàn)要對在購買水彩筆時應(yīng)同時購買幾個筆芯作出選擇,為此收集了這種水彩筆在使用期內(nèi)需要更換筆芯個數(shù)的30組數(shù)據(jù).
水筆支數(shù) | 4 | 6 | 8 | 7 | 5 |
需要更換的筆芯個數(shù)x | 7 | 8 | 9 | 10 | 11 |
設(shè)x表示水彩筆在使用期內(nèi)需要更換的筆芯個數(shù),y表示每支水彩筆在購買筆芯上所需要的費用(單位:元),n表示購買水彩筆的同時購買的筆芯個數(shù).
(1)若x=9,n=7,則y= ;若x=7,n=9,則y= ;
(2)若n=9,用含x的的代數(shù)式表示y的取值;
(3)假設(shè)這30支筆在購買時,每支筆同時購買9個筆芯,或每支筆同時購買10個筆芯,分別計算這30支筆在購買筆芯時所需的費用,以費用最省作為選擇依據(jù),判斷購買一支水彩筆的同時應(yīng)購買9個還是10個筆芯?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=3,AC=4,BC=5,P 為邊 BC 上一動點,PE⊥AB 于 E,PF⊥AC于 F,M 為 EF 中點,則 AM 的最小值為( )
A.1B.1.3C.1.2D.1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,動點P從B點出發(fā),沿B→C→D→A勻速運動,設(shè)點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.
(1)在這個變化中,自變量、因變量分別是 、 ;
(2)當(dāng)點P運動的路程x=4時,△ABP的面積為y= ;
(3)求AB的長和梯形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,依次連接邊長為1的小正方形各邊的中點,得到第二個小正方形,再依次連接第二個小正方形各邊的中點得到第三個小正方形,按這樣的規(guī)律第2019個小正方形的面積為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=2,點E在AD上,且ED=2AE.
(1)求證:△ABC∽△EAB.
(2)AC與BE交于點H,求HC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:任意兩個數(shù)a,b,按規(guī)則c=a+b得到一個新數(shù)c,稱所得的新數(shù)c為數(shù)a,b的“傳承數(shù)。”
(1)若a=1,b=2,求a,b的“傳承數(shù)”c;
(2)若a=1,b=,且+3x+1=0,求a,b的“傳承數(shù)”c;
(3)若a=2n+1,b=n1,且a,b的“傳承數(shù)”c值為一個整數(shù),則整數(shù)n的值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com