【題目】某校想知道學(xué)生對(duì)宜賓著力打造生態(tài)城市,三江六岸投入300多億元實(shí)施長江生態(tài)綜合治理工程的了解程度,在該校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷,問卷有以下四個(gè)選項(xiàng)::十分了解;:了解較多;:了解較少;:不了解(要求:每名被調(diào)查的學(xué)生必選且只能選擇一項(xiàng)),現(xiàn)將調(diào)查的結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題.

1)在被調(diào)查的人中,了解較多的人數(shù)是 人;

2)扇形統(tǒng)計(jì)圖中的選項(xiàng)了解較少部分所占扇形的圓心角的大小為

3)若該校共有2000名學(xué)生,請(qǐng)你根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生對(duì)宜賓著力打造生態(tài)城市,三江六岸投入300多億元實(shí)施長江生態(tài)綜合治理工程的了解程度十分了解了解較多的學(xué)生共有多少名?

【答案】140人;(2108°;(31200

【解析】

1)本次被抽取的學(xué)生共30÷30%=100(名),然后結(jié)合條形統(tǒng)計(jì)圖求得了解較多的人數(shù)是100-20-30-10=40人;

2)扇形圖中的選項(xiàng)“C.了解較少部分所占扇形的圓心角360°×30%=108°

3十分了解了解較多的學(xué)生:2000× =1200(名).

解:(1)本次被抽取的學(xué)生共30÷30%=100(名)

了解較多的人數(shù)是100-20-30-10=40人;

2)了解較少部分所占扇形的圓心角360°×30%=108°;;

32000×=1200人,

答:估計(jì)大約有1200.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線與直線交于點(diǎn)24),直線軸交于點(diǎn),直線軸交于點(diǎn).

1)求,的值;

2)求當(dāng)為何值時(shí),,

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5cm,在邊CD上適當(dāng)選定一點(diǎn)E,沿直線AE把△ADE折疊,使點(diǎn)D恰好落在邊BC上一點(diǎn)F處,且量得BF=12cm.求:(1)AD的長;(2)DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上弧BF的中點(diǎn),CDAF,垂足為DAB、DC的延長線交于點(diǎn)E

(1)求證:CD是⊙O的切線;

(2)若BE=3,CE=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以的直角邊AC及斜邊AB向外作等邊,等邊.已知∠BAC30°,EFAB,垂足為F,連結(jié)DF.試說明ACEF;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是用三角形擺成的圖案,擺第一層圖需要1個(gè)三角形,擺第二層圖需要3個(gè)三角形,擺第三層圖需要7個(gè)三角形,擺第四層圖需要13個(gè)三角形,擺第五層圖需要21個(gè)三角形,…,擺第n層圖需要_____個(gè)三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為11.21,1.44,正放置的四個(gè)正方形的面積為S1、S2、S3S4,則S1+2S2+2S3+S4_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖下圖所示,已知AB//CD, ∠B=30°,∠D=120°;

(1)若∠E=60°,則∠E=______;

(2)請(qǐng)?zhí)剿鳌螮與∠F之間滿足的數(shù)量關(guān)系?說明理由.

(3)如下圖所示,已知EP平分∠BEF,FG平分∠EFD,反向延長FG交EP于點(diǎn)P,求∠P的度數(shù);

查看答案和解析>>

同步練習(xí)冊(cè)答案