【題目】某物流公司承接A、B兩種貨物運輸業(yè)務,已知5月份A貨物運費單價為50元/噸,B貨物運費單價為30元/噸,共收取運費9500元;6月份由于油價上漲,運費單價上漲為:A貨物70元/噸,B貨物40元/噸;該物流公司6月承接的A種貨物和B種數(shù)量與5月份相同,6月份共收取運費13000元.
(1)該物流公司月運輸兩種貨物各多少噸?
(2)該物流公司預計7月份運輸這兩種貨物330噸,且A貨物的數(shù)量不大于B貨物的2倍,在運費單價與6月份相同的情況下,該物流公司7月份最多將收到多少運輸費?
【答案】(1)、運輸A種貨物100噸,運輸B種貨物150噸;(2)、19800元.
【解析】試題分析:(1)設A種貨物運輸了x噸,設B種貨物運輸了y噸,根據題意可得到一個關于x的不等式組,解方程組求解即可;
(2)運費可以表示為x的函數(shù),根據函數(shù)的性質,即可求解.
試題解析:(1)設A種貨物運輸了x噸,設B種貨物運輸了y噸,
依題意得: ,
解之得: .
答:物流公司月運輸A種貨物100噸,B種貨物150噸.
(2)設A種貨物為a噸,則B種貨物為(330-a)噸,
依題意得:a≤(330-a)×2,
解得:a≤220,
設獲得的利潤為W元,則W=70a+40(330-a)=30a+13200,
根據一次函數(shù)的性質,可知W隨著a的增大而增大
當W取最大值時a=220,
即W=19800元.
所以該物流公司7月份最多將收到19800元運輸費.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是10×8的網格,網格中每個小正方形的邊長均為1,A、B兩點在小正方形的頂點上,使以A、B、C為頂點的三角形分別滿足以下要求:
(1)請在圖中取一點C(點C必須在小正方形的頂點上),使△ABC為鈍角等腰三角形;
(2)通過計算,直接寫出△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要想統(tǒng)計“本班學生最喜歡的動畫片”,下列收集數(shù)據的方法比較合適的是( 。
A.調查問卷
B.訪問
C.觀察
D.查閱資料
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下面的文字,然后解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,于是小明用﹣1表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
由此我們還可以得到一個真命題:如果=x+y,其中x是整數(shù),且0<y<1,那么x=1,y=﹣1.
請解答下列問題:
(1)如果=a+b,其中a是整數(shù),且0<b<1,那么a= ,b= ;
(2)已知2+=m+n,其中m是整數(shù),且0<n<1,求|m﹣n|的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電子科技公司開發(fā)一種新產品,公司對經營的盈虧情況每月最后一天結算1次.在1~12月份中,公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關系式y(tǒng)=a(x﹣h)2+k,二次函數(shù)y=a(x﹣h)2+k的一部分圖象如圖所示,點A為拋物線的頂點,且點A、B、C的橫坐標分別為4、10、12,點A、B的縱坐標分別為﹣16、20.
(1)試確定函數(shù)關系式y(tǒng)=a(x﹣h)2+k;
(2)分別求出前9個月公司累計獲得的利潤以及10月份一個月內所獲得的利潤;
(3)在前12個月中,哪個月該公司一個月內所獲得的利潤最多?最多利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中,
(1)請寫出△ABC各點的坐標。
(2)求出S△ABC
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A′B′C′,在圖中畫出△ABC變化位置,并寫出A′、B′、C′的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,由相同邊長的小正方形組成的網格圖形,A、B、C都在格點上,利用網格畫圖:(注:所畫線條用黑色簽字筆描黑)
(1)過點C畫AB的平行線;
(2)過點B畫AC的垂線,垂足為點G;過點B畫AB的垂線,交AC的延長線于H.
(3)點B到AC的距離是線段 的長度,線段AB的長度是點 到直線
的距離.
(4)線段BG、AB的大小關系為:BG AB(填“>”、“<”或“=”),理由是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點D、E為BC邊上的兩點,且∠DAE=45°,連接EF、BF,則下列結論:①△AED≌△AEF ②△ABE∽△ACD,③BE+DC>DE④BE2+DC2=DE2,其中正確的有( )個
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解各校情況,教委對其中40個學校九年級學生課外完成作業(yè)時間調研后進行了統(tǒng)計,并根據收集的數(shù)據繪制了下面兩幅不完整的統(tǒng)計圖,請你根據圖中提供的信息,解答下面的問題:
(1)計算出學生課外完成作業(yè)時間在3045分鐘的學校對應的扇形圓心角;
(2)將圖中的條形圖補充完整;
(3)計算出學生課外完成作業(yè)時間在6075分鐘的學校占調研學?倲(shù)的百分比。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com