【題目】如圖,直線y=x﹣2與x軸、y軸分別交于點(diǎn)A、B,過點(diǎn)C(2,﹣1)作直線l∥y軸,點(diǎn)M為直線l上的一個(gè)動點(diǎn),以點(diǎn)M為圓心,MO為半徑作圓,當(dāng)⊙M與直線AB相切時(shí),點(diǎn)M的坐標(biāo)為_____.
【答案】(2,4).
【解析】
由題意可得點(diǎn)C在AB上,通過證明△BCD∽△MCE,可得,即可求點(diǎn)M坐標(biāo).
解:設(shè)點(diǎn)M(2,a)
∵當(dāng)x=2時(shí),y=×2﹣2=﹣1
∴點(diǎn)C在AB上,
∵⊙M與直線AB相切于點(diǎn)E
∴ME⊥AB
如圖,過點(diǎn)B作BD⊥MC于點(diǎn)D,
∵直線y=x﹣2與x軸、y軸分別交于點(diǎn)A、B,
∴點(diǎn)B(0,﹣2)
∴BD=2,CD=1
∴BC==
∵點(diǎn)M(2,a),點(diǎn)O(0,0),點(diǎn)C(2,﹣1)
∴MO==ME,MC=a+1
∵∠BCD=∠MCE,∠MEC=∠BDC=90°
∴△BCD∽△MCE
∴
即
∴a=4
∴點(diǎn)M(2,4)
故答案為:(2,4)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級學(xué)生參加了中考體育考試.為了了解該校九年級(1)班同學(xué)的中考體育成績情況,對全班學(xué)生的中考體育成績進(jìn)行了統(tǒng)計(jì),并繪制出以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計(jì)圖(如圖),根據(jù)圖表中的信息解答下列問題:
分組 | 分?jǐn)?shù)段(分) | 頻數(shù) |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
(1)m的值為 ;
(2)該班學(xué)生中考體育成績的中位數(shù)落在 組;(在A、B、C、D、E中選出正確答案填在橫線上)
(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級進(jìn)行經(jīng)驗(yàn)交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以為圓心作⊙,⊙與軸交于、,與軸交于點(diǎn),為⊙上不同于、的任意一點(diǎn),連接、,過點(diǎn)分別作于,于.設(shè)點(diǎn)的橫坐標(biāo)為,.當(dāng)點(diǎn)在⊙上順時(shí)針從點(diǎn)運(yùn)動到點(diǎn)的過程中,下列圖象中能表示與的函數(shù)關(guān)系的部分圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BD于E.
(1)若BC=BD,,AD=15,求△ABD的周長.
(2)若∠DBC=45°,對角線AC、BD交于點(diǎn)O,F為AE上一點(diǎn),且AF=2EO,求證:CF=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某林場計(jì)劃購買甲、乙兩種樹苗共800株,甲種樹苗每株24元,乙種樹苗每株30元,購買這兩種樹苗共用去21000元.求甲、乙兩種樹苗各購買了多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣2x+6與x軸,y軸分別交A,B兩點(diǎn),點(diǎn)A關(guān)于原點(diǎn)O的對稱點(diǎn)是點(diǎn)C,動點(diǎn)E從A出發(fā)以每秒1個(gè)單位的速度運(yùn)動到點(diǎn)C,點(diǎn)D在線段OB上滿足tan∠DEO=2,過E點(diǎn)作EF⊥AB于點(diǎn)F,點(diǎn)A關(guān)于點(diǎn)F的對稱點(diǎn)為點(diǎn)G,以DG為直徑作⊙M,設(shè)點(diǎn)E運(yùn)動的時(shí)間為t秒;
(1)當(dāng)點(diǎn)E在線段OA上運(yùn)動,t= 時(shí),△AEF與△EDO的相似比為1:;
(2)當(dāng)⊙M與y軸相切時(shí),求t的值;
(3)若直線EG與⊙M交于點(diǎn)N,是否存在t使NG=,若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AM∥BN,C是BN上一點(diǎn), BD平分∠ABN且過AC的中點(diǎn)O,交AM于點(diǎn)D,DE⊥BD,交BN于點(diǎn)E.
(1)求證:△ADO≌△CBO.
(2)求證:四邊形ABCD是菱形.
(3)若DE = AB = 2,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為3,∠BAD=60°,點(diǎn)E、F在對角線AC上(點(diǎn)E在點(diǎn)F的左側(cè)),且EF=1,則DE+BF最小值為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,∠AOC=30°,半徑為2cm的P的圓心在射線OA上,且與點(diǎn)O的距離為6cm,如果P以1cm/s的速度沿直線AB由A向B的方向移動,那么P與直線CD相切時(shí)☉P運(yùn)動的時(shí)間是( )
A.3秒或10秒B.3秒或8秒C.2秒或8秒D.2秒或10秒
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com