(2012•綏化)如圖,AB∥ED,∠ECF=70°,則∠BAF的度數(shù)為( 。
分析:由AB平行于ED,根據(jù)兩直線平行內(nèi)錯(cuò)角相等得到∠BAC=∠ECF,由∠ECF的度數(shù)求出∠BAC的度數(shù),再利用鄰補(bǔ)角定義即可求出∠BAF的度數(shù).
解答:解:∵AB∥ED,
∴∠BAC=∠ECF,又∠ECF=70°,
∴∠BAC=70°,
則∠BAF=180°-∠BAC=180°-70°=110°.
故選B.
點(diǎn)評:此題考查了平行線的性質(zhì),平行線的性質(zhì)為:兩直線平行同位角相等;兩直線平行內(nèi)錯(cuò)角相等;兩直線平行同旁內(nèi)角互補(bǔ),熟練掌握平行線的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綏化)如圖,點(diǎn)A、B、C、D為⊙O的四等分點(diǎn),動(dòng)點(diǎn)P從圓心O出發(fā),沿OC-
CD
-DO的路線做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,∠APB的度數(shù)為y度,則下列圖象中表示y(度)與t(秒)之間函數(shù)關(guān)系最恰當(dāng)?shù)氖牵ā 。?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綏化)如圖,二次函數(shù)y=ax2-4x+c的圖象經(jīng)過坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(-4,0).
(1)求二次函數(shù)的解析式;
(2)在拋物線上存在點(diǎn)P,滿足S△AOP=8,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綏化)如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上,O、M也在格點(diǎn)上.
(1)畫出△ABC關(guān)于直線OM對稱的△A1B1C1;
(2)畫出△ABC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°后所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形嗎?如果是軸對稱圖形,請畫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綏化)如圖,四邊形ABCD為矩形,C點(diǎn)在x軸上,A點(diǎn)在y軸上,D點(diǎn)坐標(biāo)是(0,0),B點(diǎn)坐標(biāo)是(3,4),矩形ABCD沿直線EF折疊,點(diǎn)A落在BC邊上的G處,E、F分別在AD、AB上,且F點(diǎn)的坐標(biāo)是(2,4).
(1)求G點(diǎn)坐標(biāo);
(2)求直線EF解析式;
(3)點(diǎn)N在x軸上,直線EF上是否存在點(diǎn)M,使以M、N、F、G為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出M點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案