【題目】已知A、B在數(shù)軸上對(duì)應(yīng)的數(shù)分別用+2、﹣6表示,P是數(shù)軸上的一個(gè)動(dòng)點(diǎn).
(1)數(shù)軸上A、B兩點(diǎn)的距離為 .
(2)當(dāng)P點(diǎn)滿(mǎn)足PB=2PA時(shí),求P點(diǎn)表示的數(shù).
(3)將一枚棋子放在數(shù)軸上k0點(diǎn),第一步從k點(diǎn)向右跳2個(gè)單位到k1,第二步從k1點(diǎn)向左跳4個(gè)單位到k2,第三步從k2點(diǎn)向右跳6個(gè)單位到k3,第四步從k3點(diǎn)向左跳8個(gè)單位到k4.
①如此跳6步,棋子落在數(shù)軸的k6點(diǎn),若k6表示的數(shù)是12,則ko的值是多少?
②若如此跳了1002步,棋子落在數(shù)軸上的點(diǎn)k1002,如果k1002所表示的數(shù)是1998,那么k0所表示的數(shù)是 (請(qǐng)直接寫(xiě)答案).
【答案】(1)8;(2)點(diǎn)P所表示的數(shù)為﹣或10;(3)①18;②3000.
【解析】
(1)根據(jù)數(shù)軸上兩點(diǎn)之間距離的計(jì)算方法,即兩個(gè)數(shù)差的絕對(duì)值,
(2)分兩種情況,在點(diǎn)A的左側(cè)和右側(cè),用(1)中的方法列方程解答即可,
(3)①利用距離公式得到a+2-4+6-8+10-12=12,求出a即可,②同①方法建立方程求出a即可.
(1)|+2﹣(﹣6)|=8,
故答案為:8.
(2)設(shè)點(diǎn)表示的數(shù)為x,
①當(dāng)點(diǎn)P在點(diǎn)A的左側(cè)時(shí),有2(2﹣x)=x﹣(﹣6)
解得,x=﹣,
②當(dāng)點(diǎn)P在點(diǎn)A的右側(cè)時(shí),有x+6=2(x﹣2),
解得,x=10
答:點(diǎn)P所表示的數(shù)為﹣或10.
(3)①設(shè)k0所表示的數(shù)為a,由題意得,
a+2﹣4+6﹣8+10﹣12=12,
解得,a=18,
答:k0所表示的數(shù)為18.
②由題意得,
a+2﹣4+6﹣8+10﹣12+…+2002﹣2004=1998,
解得,a=3000,
故答案為:3000.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建設(shè)銀行的某儲(chǔ)蓄員小張?jiān)谵k理業(yè)務(wù)時(shí),約定存入為正,取出為負(fù). 2019年10月29日,他先后辦理了七筆業(yè)務(wù): +2000元、-800元、+400元、-800元、+1400元、-1700元、-200元.
(1)若他早上領(lǐng)取備用金4000元,那么下班時(shí)應(yīng)交回銀行_________元錢(qián).
(2)請(qǐng)判斷在這七次辦理業(yè)務(wù)中,小張?jiān)诘?/span>_______次業(yè)務(wù)辦理后手中現(xiàn)金最多,第_________次業(yè)務(wù)辦理后手中現(xiàn)金最少.
(3)若每辦一件業(yè)務(wù),銀行發(fā)給業(yè)務(wù)量的0.2%作為獎(jiǎng)勵(lì),小張這天應(yīng)得獎(jiǎng)金多少元?
(4)若記小張第一次辦理業(yè)務(wù)前的現(xiàn)金為0點(diǎn),用折線統(tǒng)計(jì)圖表示這7次業(yè)務(wù)辦理中小張手中現(xiàn)金的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)認(rèn)真閱讀材料,并解決下面問(wèn)題:
(1)以 a 、b 為直角邊,以 c 為斜邊做四個(gè)全等的直角三角形,把這四個(gè)直角三角形拼成如圖所示形狀,使 A 、 E 、 B 三點(diǎn)在一條直線上, B 、 F 、C 三點(diǎn)在一條直線上, C 、G 、D 三點(diǎn)在一條直線上。容易得到:四邊形 ABCD 和四邊形 EFGH 均是正方形;請(qǐng)用兩個(gè)不同的代數(shù)式 和 表示正方形ABCD 的面積;于是可得到直角三角形關(guān)于三邊的一個(gè)重要的等量關(guān)系是 (用含字母 a 、b 、 c 的最簡(jiǎn)式子填空)
(2)如圖,已知正方形 ABCD 中,MAN 45 ,MAN 繞點(diǎn)A 順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB 、DC 于點(diǎn) M 、 N , AH MN 于點(diǎn) H 。請(qǐng)問(wèn): MN 與BM 、 DN 之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(3)如圖,在(2)的情況下,
①請(qǐng)判斷 AH 與 AB 之間的數(shù)量關(guān)系,并說(shuō)明理由;
②已知 AH 12 ,若 N 還是CD 的中點(diǎn),結(jié)合(1)的結(jié)論,求 BM 的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將下列各數(shù)填在相應(yīng)的集合里.
﹣,9,0,+4.3,|﹣0.5|,﹣(+7),18%,(﹣3)4,﹣(﹣2)5,﹣62
正有理數(shù)集合:{…};
正分?jǐn)?shù)集合:{…};
負(fù)整數(shù)集合:{…};
自然數(shù)集合:{…}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)所得的四邊形必是( 。
A.菱形B.矩形C.正方形D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀理解)若數(shù)軸上兩點(diǎn)A、B所表示的數(shù)分別為a和b,則有
①A、B兩點(diǎn)的中點(diǎn)表示的數(shù)為;
②當(dāng)b>a時(shí),A、B兩點(diǎn)間的距離為AB=b﹣a.
(解決問(wèn)題)數(shù)軸上兩點(diǎn)A、B所表示的數(shù)分別為a和b,且滿(mǎn)足|a+2|+(b﹣8)2020=0
(1)求出A、B兩點(diǎn)的中點(diǎn)C表示的數(shù);
(2)點(diǎn)D從原點(diǎn)O點(diǎn)出發(fā)向右運(yùn)動(dòng),經(jīng)過(guò)2秒后點(diǎn)D到A點(diǎn)的距離是點(diǎn)D到C點(diǎn)距離的2倍,求點(diǎn)D的運(yùn)動(dòng)速度是每秒多少個(gè)單位長(zhǎng)度?
(數(shù)學(xué)思考)(3)點(diǎn)E以每秒1個(gè)單位的速度從原點(diǎn)O出發(fā)向右運(yùn)動(dòng),同時(shí),點(diǎn)M從點(diǎn)A出發(fā)以每秒7個(gè)單位的速度向左運(yùn)動(dòng),點(diǎn)N從點(diǎn)B出發(fā),以每秒10個(gè)單位的速度向右運(yùn)動(dòng),P、Q分別為ME、ON的中點(diǎn).思考:在運(yùn)動(dòng)過(guò)程中,的值是否發(fā)生變化?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處. 已知折痕AE=cm,且tan∠EFC=,則矩形ABCD的周長(zhǎng)為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于點(diǎn)D,DE⊥AD交AB于點(diǎn)E,M為AE的中點(diǎn),BF⊥BC交CM的延長(zhǎng)線于點(diǎn)F,BD=4,CD=3.下列結(jié)論:①∠AED=∠ADC;② ;③ACBE=12;④3BF=4AC;其中正確結(jié)論的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com