【題目】如圖,ABC內(nèi)接于⊙OAB為直徑,作ODABAC于點D,延長BC,OD交于點F,過點C作⊙O的切線CE,交OF于點E

1)求證:ECED;

2)如果OA4EF3,求弦AC的長.

【答案】1)見解析;(2

【解析】

1)連接OC,由切線的性質(zhì)可證得∠ACE+A=90°,又∠CDE+A=90°,可得∠CDE=ACE,則結(jié)論得證;

2)先根據(jù)勾股定理求出OE,OD,AD的長,證明RtAODRtACB,得出比例線段即可求出AC的長.

1)證明:連接OC,

CE與⊙O相切,OC是⊙O的半徑,

OCCE,

∴∠OCA+ACE90°,

OAOC,

∴∠A=∠OCA,

∴∠ACE+A90°

ODAB,

∴∠ODA+A90°

∵∠ODA=∠CDE,

∴∠CDE+A90°,

∴∠CDE=∠ACE

ECED;

2)∵AB為⊙O的直徑,

∴∠ACB90°,

RtDCF中,∠DCE+ECF90°,∠DCE=∠CDE,

∴∠CDE+ECF90°,

∵∠CDE+F90°

∴∠ECF=∠F,

ECEF,

EF3

ECDE3,

OE5,

ODOEDE2

RtOAD中,AD,

RtAODRtACB中,

∵∠A=∠A,∠ACB=∠AOD

RtAODRtACB,

,即,

AC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解放碑某商場地下停車場有5個出入口,每天早晨7點開始對外停車且此時車位空置率為80%,在每個出入口的車輛數(shù)均是勻速出入的情況下,如果開放2個進口和3個出口,7小時車庫恰好停滿:如果開放3個進口和2個出口,4小時車庫恰好停滿.2019年清明節(jié)期間,由于商場人數(shù)增多,早晨7點時的車位空置率變?yōu)?/span>60%,又因為車庫改造,只能開放2個進口和1個出口,則從早晨7點開始經(jīng)過_______小時車庫恰好停滿.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,點E在邊CD上,且CD3DE.將ADE沿AE對折至AFE,延長EF交邊BC于點G,連結(jié)AG、CF

1)求證:①ABGAFG; BGGC;

2)求FGC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,直線y4x4x軸,y軸分別交于點AB,點A在拋物線yax2bx3aa0)上,將點B向右平移3個單位長度,得到點C

1)拋物線的頂點坐標為 (用含a的代數(shù)式表示)

2)若a1,當t1≤xt時,函數(shù)yax2bx3aa0)的最大值為y1,最小值為y2,且y1y22,求t的值;

3)若拋物線與線段BC恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年泉州市初中體育中考中隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為158,160,154158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是(  )

A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張琪和爸爸到曲江池遺址公園運動,兩人同時從家出發(fā),沿相同路線前行,途中爸爸有事返回,張琪繼續(xù)前行5分鐘后也原路返回,兩人恰好同時到家張琪和爸爸在整個運動過程中離家的路點y1(米),y2(米)與運動時間x(分)之間的函數(shù)關(guān)系如圖所示

1)求爸爸返問時離家的路程y2(米)與運動時間x(分)之間的函數(shù)關(guān)系式;

2)張琪開始返回時與爸爸相距多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次夏令營中,小亮從位于點的營地出發(fā),沿北偏東60°方向走了到達地,然后再沿北偏西30°方向走了若干千米到達地,測得地在地南偏西30°方向,則、兩地的距離為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線C1y=a(x+2)2-5的頂點為P,與x軸相交于AB兩點(點A在點B的左邊),點B的橫坐標是1

(1) P點坐標及a的值;

(2)如圖(1),

拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點為M,當點PM關(guān)于點B成中心對稱時,求C3的解析式;

(3) 如圖(2),

Qx軸正半軸上一點,將拋物線C1繞點Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當以點P、N、F為頂點的三角形是直角三角形時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+3x軸、y軸分別交于B、C兩點,拋物線y=﹣x2+bx+c經(jīng)過B、C兩點,與x軸另一交點為A,頂點為D

1)求拋物線的解析式;

2)在x軸上找一點E,使△EDC的周長最小,求符合條件的E點坐標;

3)在拋物線的對稱軸上是否存在一點P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案