精英家教網 > 初中數學 > 題目詳情

【題目】某校甲、乙兩班分別有一男生和一女生共4名學生報名競選校園廣播播音員.
(1)若從甲、乙兩班報名的學生中分別隨機選1名學生,則所選的2名學生性別相同的概率是多少?
(2)若從報名的4名學生中隨機選2名,求這2名學生來自同一班級的概率.

【答案】
(1)解:根據題意畫圖如下:

共有4種情況,其中所選的2名學生性別相同的有2種,

則所選的2名學生性別相同的概率是 =


(2)解:將(1)、(2)兩班報名的學生分別記為甲1、甲2、乙1、乙2(注:1表示男生,2表示女生),樹狀圖如圖所示:

所以P2名學生來自同一班級)= =


【解析】(1)根據甲、乙兩班分別有一男一女,列出樹狀圖,得出所有情況,再根據概率公式即可得出答案;(2)根據題意先畫出樹狀圖,得出所有情況數,再根據概率公式即可得出答案.
【考點精析】本題主要考查了列表法與樹狀圖法的相關知識點,需要掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】先化簡,再求值:

(1)xx-1)+2xx+1)-(3x-1)(2x-5),其中x=2.

(2),其中=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,已知:,,以斜邊AB的中點P為旋轉中心,把這個三角形按逆時針方向旋轉得到,則旋轉前后兩個直角三角形重疊部分的面積為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知O是直線AB上的一點,∠COD是直角,OE平分∠BOC.

(1)如圖①,若∠AOC=30°,求∠DOE的度數;

(2)在圖①中,若∠AOC,直接寫出∠DOE的度數(用含的代數式表示);

(3)將圖①中的∠DOC繞頂點O順時針旋轉至圖②的位置,探究∠AOC和∠DOE的度數之間的關系,寫出你的結論,并說明理由;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于圓O,四邊形ABCO是平行四邊形,則∠ADC=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C為AB上面半圓上一點,點D為AB的下面半圓的中點,連接CD與AB交于點E,延長BA至F,使EF=CF.
(1)求證:CF與⊙O相切;
(2)若DEDC=13,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一食堂需要購買盒子存放食物,盒子有A、B兩種型號,單個盒子的容量和價格如表格所示.現有15升食物需要存放且要求每個盒子都要裝滿,由于A型號盒子正做促銷活動:購買三個及三個以上可一次性每個返還現金1.5元,則該食堂購買盒子所需的最少費用是

型號

A

B

單個盒子容量(升)

2

3

單價(元)

5

6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若十位上的數字比個位上的數字、百位上的數字都大的三位數叫做中高數,如796就是一個“中高數”.若一個三位數的十位上數字為7,且從4、5、6、8中隨機選取兩數,與7組成“中高數”,那么組成“中高數”的概率是多少?(請用“畫樹狀圖”或“列表”等方法寫出分析過程

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,在下列各圖中,點O為直線AB上一點,∠AOC=60°,直角三角板的直角頂點放在點處.

(1)如圖1,三角板一邊OM在射線OB上,另一邊ON在直線AB的下方,則∠BOC的度數為   °,CON的度數為   °;

(2)如圖2,三角板一邊OM恰好在∠BOC的角平分線OE上,另一邊ON在直線AB的下方,此時∠BON的度數為   °;

(3)請從下列(A),(B)兩題中任選一題作答.

我選擇:   

A)在圖2中,延長線段NO得到射線OD,如圖3,則∠AOD的度數為   °;DOC與∠BON的數量關系是∠DOC   BON(填“>”、“=”“<”);

B)如圖4,MNAB,ON在∠AOC的內部,若另一邊OM在直線AB的下方,則∠COM+AON的度數為   °;AOMCON的度數為   °.

查看答案和解析>>

同步練習冊答案