【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對(duì)角線AC于點(diǎn)E,F,連接BEDF

1)求證:AE=CF;

2)若BE=DE,求證:四邊形EBFD為菱形.

【答案】1)見解析;(2)見解析.

【解析】

1)結(jié)合題目條件,通過(guò)證明△BCF≌△DAE來(lái)證明AE=CF即可;

2)由△BCF≌△DAE,得到BF=DE,而//,得到四邊形BFDE為平行四邊形,結(jié)合BE=DE,即可得證.

1)證明:四邊形ABCD為平行四邊形;

∴AD//BC,AD=BC

∴∠BCF=∠DAE;

∵DE//BF

∴∠BFE=∠DEF;

∴∠BFC=∠DEA;

△BCF△DAE中:

∴△BCF≌△DAEAAS

∴CF=AE

2)由(1)得△BCF≌△DAE;

∴BF=DE;

∵BF//DE;

四邊形BFDE為平行四邊形;

∵BE=DE;

平行四邊形BFDE為菱形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,EBC的中點(diǎn),以AC為直徑的⊙OAB邊交于點(diǎn)D,連接DE

(1)求證:DE⊙O的切線;

(2)CD6cm,DE5cm,求⊙O直徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為6E、F分別是邊CD、AD上動(dòng)點(diǎn),AEBF交于點(diǎn)G

1)如圖(1),若E為邊CD的中點(diǎn),AF=2FD,求AG的長(zhǎng).

2)如圖(2),若點(diǎn)FAD上從AD運(yùn)動(dòng),點(diǎn)EDC上從DC運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),同時(shí)到達(dá)各自終點(diǎn),求在運(yùn)動(dòng)過(guò)程中,點(diǎn)G運(yùn)動(dòng)的路徑長(zhǎng).

3)如圖(3),若E、F分別是邊CD、AD上的中點(diǎn),BDAE交于點(diǎn)H,求∠FBD的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“五四青年節(jié)”來(lái)臨之際,某校舉辦了以“我的青春我做主”為主題的演講比賽.并從參加比賽的學(xué)生中隨機(jī)抽取部分學(xué)生的演講成績(jī)進(jìn)行統(tǒng)計(jì)(等級(jí)記為:優(yōu)秀,:良好,:一般,:較差),并制作了如下統(tǒng)計(jì)圖表(部分信息未給出).

等級(jí)

人數(shù)

20

10

請(qǐng)根據(jù)統(tǒng)計(jì)圖表中的信息解答下列問題:

1)這次共抽取了______名參加演講比賽的學(xué)生,統(tǒng)汁圖中________,_______

2)求扇形統(tǒng)計(jì)圖中演講成績(jī)等級(jí)為“一般”所對(duì)應(yīng)扇形的圓心角的度數(shù);

3)若該校學(xué)生共2000人,如果都參加了演講比賽,請(qǐng)你估計(jì)成績(jī)達(dá)到優(yōu)秀的學(xué)生有多少人?

4)若演講比賽成績(jī)?yōu)?/span>等級(jí)的學(xué)生中恰好有2名女生,其余的學(xué)生為男生,從等級(jí)的學(xué)生中抽取兩名同學(xué)參加全市演講比賽,請(qǐng)用列表或畫樹狀圖的方法求出“恰好抽中—名男生和一名女生”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】桌面上有四張正面分別標(biāo)有數(shù)字,,的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗勻.

(1)隨機(jī)翻開一張卡片,正面所標(biāo)數(shù)字大于的概率為 ;

(2)隨機(jī)翻開一張卡片,從余下的三張卡片中再翻開一張,求翻開的兩張卡片正面所標(biāo)數(shù)字之和是偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家具生產(chǎn)廠生產(chǎn)某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子張或椅子把,現(xiàn)計(jì)劃用塊這種板材生產(chǎn)一批桌椅(不考慮板材的損耗,恰好配套),設(shè)用塊板材做椅子,用塊板材做桌子,則下列方程組正確的是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA是⊙O的切線,A是切點(diǎn),AC是直徑,AB是弦,連接PB、PC,PCAB于點(diǎn)E,且PA=PB.

(1)求證:PB是⊙O的切線;

(2)若∠APC=3BPC,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過(guò)點(diǎn),點(diǎn),與x軸交于另一點(diǎn)C,頂點(diǎn)為D,連接

(1)求該拋物線的解析式;

(2)點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)B,C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t

①當(dāng)點(diǎn)P在直線的下方運(yùn)動(dòng)時(shí),求面積的最大值;

②該拋物線上是否存在點(diǎn)P,使得?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo)若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店從機(jī)械廠購(gòu)進(jìn)甲、乙兩種零件進(jìn)行銷售,若甲種零件每件的進(jìn)價(jià)是乙種零件每件進(jìn)價(jià)的,用1600元單獨(dú)購(gòu)進(jìn)一種零件時(shí),購(gòu)進(jìn)甲種零件的數(shù)量比乙種零件的數(shù)量多4.

(1)求每件甲種零件和每件乙種零件的進(jìn)價(jià)分別為多少元?

(2)若該商店計(jì)劃購(gòu)進(jìn)甲、乙兩種零件共110件,準(zhǔn)備將零件批發(fā)給零售商. 甲種零件的批發(fā)價(jià)是每件100元,乙種零件的批發(fā)價(jià)是每件130元,該商店計(jì)劃將這批產(chǎn)品全部售出從零售商處獲利不低于3000元,那么該商店最多購(gòu)進(jìn)多少件甲種零件?

查看答案和解析>>

同步練習(xí)冊(cè)答案