如下圖,∠AOC=AOB-∠_______

 

答案:BOC
提示:

    由圖可知∠AOB=AOC+∠COB

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.
精英家教網(wǎng)
問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關(guān)于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最。ú槐刈C明).
模型應(yīng)用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關(guān)于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是
 
;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內(nèi)一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

如下圖,∠AOC=∠COD=∠BOD,則OD平分______,OC平分______,

AOB=______=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

如下圖,∠AOC=60°,點B在OA上,且,若以B為圓心,R為半徑的圓與直線OC相離,則R的取值范圍________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:022

如下圖,∠AOC=60°,點B在OA上,且,若以B為圓心,R為半徑的圓與直線OC相離,則R的取值范圍________.

查看答案和解析>>

同步練習(xí)冊答案