【題目】如圖,已知△ABCABAC,在AC上有一點(diǎn)D,連接BD,并延長(zhǎng)至點(diǎn)E,使AEAB

1)畫圖:作∠EAC的平分線AF,AFDE于點(diǎn)F(用尺規(guī)作圖,保留作圖痕跡,不寫作法);

2)在(1)的條件下,連接CF,求證:∠ABE=∠ACF;

3)若AC8,∠E15°,求三角形ABE的面積.

【答案】(1)詳見解析;(2)詳見解析;(3)16.

【解析】

1)以點(diǎn)A為圓心,以任意長(zhǎng)為半徑畫弧,分別與AC、AE相交,然后以這兩點(diǎn)為圓心,以大于它們長(zhǎng)度為半徑畫弧,兩弧相交于一點(diǎn),過(guò)點(diǎn)A與這一點(diǎn)作出射線與BE的交點(diǎn)即為所求的點(diǎn)F

2)求出AEAC,根據(jù)角平分線的定義可得∠EAF=∠CAF,再利用邊角邊證明AEFACF全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ABE=∠ACF

3)作高線EG,根據(jù)三角形的外角性質(zhì)得∠EAG30°,根據(jù)直角三角形的性質(zhì)可得高線EG4,根據(jù)三角形面積公式可得結(jié)論.

1)解:如圖所示;

2)證明:∵ABAC,AEAB

AEAC,

AF是∠EAC的平分線,

∴∠EAF=∠CAF,

AEFACF中,

,

∴△AEF≌△ACFSAS),

∴∠E=∠ACF,

ABAE

∴∠ABE=∠E,

∴∠ABE=∠ACF

3)解:如圖,過(guò)EEGAB,交BA的延長(zhǎng)線于G,

ABACAE8,

∴∠ABE=∠AEB15°

∴∠GAE=∠ABE+AEB30°,

EGAE4,

∴三角形ABE的面積=16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線p:y=ax2+bx+c的頂點(diǎn)為C,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為C′,我們稱以A為頂點(diǎn)且過(guò)點(diǎn)C′,對(duì)稱軸與y軸平行的拋物線為拋物線p的“夢(mèng)之星”拋物線,直線AC′為拋物線p的“夢(mèng)之星”直線.若一條拋物線的“夢(mèng)之星”拋物線和“夢(mèng)之星”直線分別是y=x2+2x+1和y=2x+2,則這條拋物線的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x滿足(x4) (x9)6,求(x4)2+(x9)2的值.

解:設(shè)x4a,x9b,則(x4)(x9)ab6ab(x4)(x9)5,

(x4)2+(x9)2a2+b2(ab)22ab522×637

請(qǐng)仿照上面的方法求解下面問(wèn)題:

(1)x滿足(x2)(x5)10,求(x2)2 + (x5)2的值

(2)已知正方形ABCD的邊長(zhǎng)為x,E,F分別是AD、DC上的點(diǎn),且AE1CF3,長(zhǎng)方形EMFD的面積是15,分別以MF、DF作正方形,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于 兩點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)設(shè)點(diǎn)是反比例函數(shù)圖象上兩點(diǎn),,求的值;

3)若Mx1,y1)和Nx2y2)兩點(diǎn)在直線AB上,如圖2所示,過(guò)M、N兩點(diǎn)分別作y軸的平行線交雙曲線于EF,已知﹣3x10,x21,請(qǐng)?zhí)骄慨?dāng)x1x2滿足什么關(guān)系時(shí),MNEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC角平分線AE、CF交于點(diǎn)P,BD是△ABC的高,點(diǎn)HAC上,AFAH,下列結(jié)論:APC90°+ABC;PH平分∠APCBCAB,連接BP,則∠DBP=∠BAC﹣∠BCAPHBD,則△ABC為等腰三角形,其中正確的結(jié)論有_____(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC 是等邊三角形,P BC 上任意一點(diǎn),PDAB,PEAC,連接 DE.記ADE 的周長(zhǎng)為,四邊形 BDEC 的周長(zhǎng)為,則的大小關(guān)系是( )

A. B. C. D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC 中,ABAD,CBCE

1)當(dāng)∠ABC90°時(shí)(如圖①),∠EBD °;

2)當(dāng)∠ABCn≠90)時(shí)(如圖②),求∠EBD 的度數(shù)(用含 n 的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn)A1,0),點(diǎn)A第一次向右跳動(dòng)至A1-1,1),第二次向左跳動(dòng)至A22,1),第三次向右跳動(dòng)至A3-2,2),第四次向左跳動(dòng)至A43,2)依照此規(guī)律跳動(dòng)下去,點(diǎn)A2020次跳動(dòng)至A2020的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
(1)求出每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)如果該企業(yè)要使每天的銷售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)

查看答案和解析>>

同步練習(xí)冊(cè)答案