【題目】如圖,Rt△ABC中,B=90°,AB=3cm,BC=4cm.點DAC上,AD=1cm,點P從點A出發(fā),沿AB勻速運動;點Q從點C出發(fā),沿CBAC的路徑勻速運動.兩點同時出發(fā),在B點處首次相遇后,點P的運動速度每秒提高了2cm,并沿BCA的路徑勻速運動;點Q保持速度不變,并繼續(xù)沿原路徑勻速運動,兩點在D點處再次相遇后停止運動,設點P原來的速度為xcm/s

1)點Q的速度為 cm/s(用含x的代數(shù)式表示).

2)求點P原來的速度.

【答案】1x;(2cm/s

【解析】試題分析:1)設點Q的速度為ycm/s,根據(jù)題意得方程即可得到結論;

2)根據(jù)勾股定理得到AC的值,求得CD=5﹣1=4,列方程即可得到結論.

試題解析:解:(1)設點Q的速度為ycm/s,由題意得x=4÷y,y=x,故答案為: x;

2AC===5,CD=51=4,在B點處首次相遇后,點P的運動速度為(x+2cm/s,由題意得,解得:x=cm/s).

答:點P原來的速度為cm/s

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】作圖題:1)已知:如圖,線段a、b、c

求作:ΔABC,使得BCa,ACbABc.(保留作圖痕跡,不寫作法)

2)求作:∠AOB的平分線OC.(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】E、F分別在平行四邊形ABCD的邊BC、AD上,BE=DF,點P在邊AB上,APPB=1nn1),過點P且平行于AD的直線lABE分成面積為S1、S2的兩部分,將CDF分成面積為S3、S4的兩部分(如圖),下列四個等式:

其中成立的有(  )

A. ①②④ B. ②③ C. ②③④ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校5月份舉行了八年級生物實驗考查,有AB兩個考查實驗,規(guī)定每位學生只參加其中一個實驗的考查,并由學生自己抽簽決定具體的考查實驗,小明、小麗、小華都參加了本次考查.

1)小麗參加實驗A考查的概率是

2)用列表或畫樹狀圖的方法求小明、小麗都參加實驗A考查的概率;

3)他們三人都參加實驗A考查的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接“均衡教育大檢查”,縣委縣府對通往某偏遠學校的一段全長為1200 米的道路進行了改造,鋪設草油路面.鋪設400 米后,為了盡快完成道路改造后來每天的工作效率比原計劃提高25%,結果共用13天完成道路改造任務

1求原計劃每天鋪設路面多少米;

2若承包商原來每天支付工人工資為1500,提高工作效率后每天支付給工人的工資增長了20%,完成整個工程后承包商共支付工人工資多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,Rt△ACB 中,C=90°,點DAC上,CBD=∠A,過A、D兩點的圓的圓心OAB上.

1)利用直尺和圓規(guī)在圖1中畫出O(不寫作法,保留作圖痕跡,并用黑色水筆把線條描清楚);

2)判斷BD所在直線與(1)中所作的O的位置關系,并證明你的結論;

3)設OAB于點E,連接DE,過點EEFBC,F為垂足,若點D是線段AC的黃金分割點(即),如圖2,試說明四邊形DEFC是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:

例題:求代數(shù)式y2+4y+8的最小值.

解:y2+4y+8=y2+4y+4+4=(y+2)2+4

y+2)2≥0

y+2)2+4≥4

y2+4y+8的最小值是4.

(1)求代數(shù)式m2+m+4的最小值;

(2)求代數(shù)式4﹣x2+2x的最大值;

(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設AB=x(m),請問:當x取何值時,花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校準備購進一批籃球和足球,買1個籃球和2個足球共需170元,買2個籃球和1個足球共需190元.

1)求一個籃球和一個足球的售價各是多少元?

2)學校欲購進籃球和足球共100個,且足球數(shù)量不多于籃球數(shù)量的2倍,求出最多購買足球多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點BCE三點在同一條直線上,CD平分∠ACEDBM=DAN,DMBEM,DNACN.1)求證:BDM≌△ADN ;(2)若AC=2BC=1,求CM的長.

查看答案和解析>>

同步練習冊答案