【題目】如圖,某校20周年校慶時(shí),需要在草場上利用氣球懸掛宣傳條幅,EF為旗桿,氣球從A處起飛,幾分鐘后便飛達(dá)C處,此時(shí),在AF延長線上的點(diǎn)B處測得氣球和旗桿EF的頂點(diǎn)E在同一直線上.

(1)已知旗桿高為12米,若在點(diǎn)B處測得旗桿頂點(diǎn)E的仰角為30°,A處測得點(diǎn)E的仰角為45°,試求AB的長(結(jié)果保留根號);
(2)在(1)的條件下,若∠BCA=45°,繩子在空中視為一條線段,試求繩子AC的長(結(jié)果保留根號)?

【答案】
(1)

解:∵在直角△BEF中,tan∠EBF= ,

∴BE= = =12

同理AF=EF=12(米),

則AB=BF+AF=12 +12(米)


(2)

解:作AG⊥BE于點(diǎn)G,

在直角△ABG中,AG=ABsin30°= (12 +12)=6 +6.

又∵直角△AGC中,∠ACG=45°,

∴AC= AG=6 +6 (米).


【解析】(1)在直角△BEF中首先求得BF,然后在直角△AEF中求得AF,根據(jù)AB=BF+AF即可求解;(2)作AG⊥BC于點(diǎn)G,在直角△ABG中首先求得AG,然后在直角△AGC中利用三角函數(shù)求解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解關(guān)于仰角俯角問題的相關(guān)知識(shí),掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,CD的右側(cè),BE平分ABC,DE平分ADC,BE、DE所在直線交于點(diǎn)E,ADC=70°.

(1)EDC的度數(shù);

(2)ABC=n°,BED的度數(shù)(用含n的代數(shù)式表示);

(3)將線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,畫出圖形并判斷BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字,解答問題.

大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分-1,根據(jù)以上的內(nèi)容,解答下面的問題:

1的整數(shù)部分是 ,小數(shù)部分是 ;

21+的整數(shù)部分是 ,小數(shù)部分是 ;

3若設(shè)2+整數(shù)部分是x,小數(shù)部分是y,求x-y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣4x與x軸交于點(diǎn)O,A,頂點(diǎn)為B,連接AB并延長,交y軸于點(diǎn)C,則圖中陰影部分的面積和為(

A.4
B.8
C.16
D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)報(bào)名參加學(xué)校秋季運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用T1、T2表示).
(1)該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率P為
(2)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),求恰好是一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率P1 , 利用列表法或樹狀圖加以說明;
(3)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),則兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率P2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】著名的瑞士數(shù)學(xué)家歐拉曾指出:可以表示為四個(gè)整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為四個(gè)整數(shù)平方之和,即 ,這就是著名的歐拉恒等式,有人稱這樣的數(shù)為不變心的數(shù).實(shí)際上,上述結(jié)論可減弱為:可以表示為兩個(gè)整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為兩個(gè)整數(shù)平方之和.

【動(dòng)手一試】

試將改成兩個(gè)整數(shù)平方之和的形式.

【閱讀思考】

在數(shù)學(xué)思想中,有種解題技巧稱之為無中生有.例如問題:將代數(shù)式改成兩個(gè)平方之差的形式.解:原式

【解決問題】

請你靈活運(yùn)用利用上述思想來解決不變心的數(shù)問題:將代數(shù)式改成兩個(gè)整數(shù)平方之和的形式(其中a、bc、d均為整數(shù)),并給出詳細(xì)的推導(dǎo)過程﹒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列哪組條件能夠判別四邊形ABCD是平行四邊形?(  。

A. AB∥CD,AD=BC B. AB=CD,AD=BC

C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DBC的中點(diǎn),點(diǎn)EF分別在線段AD及其延長線上,且DE=DF.給出下列條件:

①BE⊥EC;②BF∥CE;③AB=AC;

從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是 (只填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點(diǎn)A20)同時(shí)出發(fā),沿矩形BCDE的邊作環(huán)繞運(yùn)動(dòng),物體甲按逆時(shí)針方向以1個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針方向以2個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后的第2012次相遇地點(diǎn)的坐標(biāo)是(

A. 2,0 B. ﹣1,1 C. ﹣2,1 D. ﹣1﹣1

查看答案和解析>>

同步練習(xí)冊答案