【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(6,0),點(diǎn)C坐標(biāo)為(0,6),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接BD.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)點(diǎn)F是拋物線上的動(dòng)點(diǎn),當(dāng)∠FBA=∠BDE時(shí),求點(diǎn)F的坐標(biāo);
(3)若點(diǎn)P是x軸上方拋物線上的動(dòng)點(diǎn),以PB為邊作正方形PBFG,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨著改變,當(dāng)頂點(diǎn)F或G恰好落在y軸上時(shí),請直接寫出點(diǎn)P的橫坐標(biāo).
【答案】(1)D(2,8);(2)(﹣1,)或(﹣3,﹣);(3)點(diǎn)P的橫坐標(biāo)為1+或4或0.
【解析】
(1)由B、C的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式,再求其頂點(diǎn)D即可;
(2)過F作FG⊥x軸于點(diǎn)G,可設(shè)出F點(diǎn)坐標(biāo),利用△FBG∽△BDE,由相似三角形的性質(zhì)可得到關(guān)于F點(diǎn)坐標(biāo)的方程,可求得F點(diǎn)的坐標(biāo);
(3)設(shè)P(m,m2+2m+6),有四種情況:
①如圖2,當(dāng)G在y軸上時(shí),過P作PQ⊥y軸于Q,作PM⊥x軸于M,
證明△PQG≌△PMB,則PQ=PM,列方程可得m的值;
②當(dāng)F在y軸上時(shí),如圖3,過P作PM⊥x軸于M,同理得結(jié)論;
③當(dāng)F在y軸上時(shí),如圖4,此時(shí)P與C重合;
④當(dāng)G在y軸上時(shí),如圖5,過P作PM⊥x軸于M,作PN⊥y軸于N,列方程可得m的值.
解:(1)把點(diǎn)B坐標(biāo)為(6,0),點(diǎn)C坐標(biāo)為(0,6)代入拋物線y=﹣x2+bx+c得:
,
解得: ,
∴y=﹣x2+2x+6=﹣(x﹣2)2+8,
∴D(2,8);
(2)如圖1,過F作FG⊥x軸于點(diǎn)G,
設(shè)F(x,﹣x2+2x+6),則FG=|﹣x2+2x+6|,
∵∠FBA=∠BDE,∠FGB=∠BED=90°,
∴△FBG∽△BDE,
∴ ,
∵B(6,0),D(2,8),
∴E(2,0),BE=4,DE=8,OB=6,
∴BG=6﹣x,
∴ = = ,
當(dāng)點(diǎn)F在x軸上方時(shí),有6﹣x=2(﹣+2x+6),
解得x=﹣1或x=6(舍去),
此時(shí)F點(diǎn)的坐標(biāo)為(﹣1,);
當(dāng)點(diǎn)F在x軸下方時(shí),有6﹣x=2(-2x-6),
解得x=﹣3或x=6(舍去),
此時(shí)F點(diǎn)的坐標(biāo)為(﹣3,﹣);
綜上可知F點(diǎn)的坐標(biāo)為(﹣1,)或(﹣3,﹣ );
(3)設(shè)P(m,),
有三種情況:
①如圖2,當(dāng)G在y軸上時(shí),過P作PQ⊥y軸于Q,作PM⊥x軸于M,
∵四邊形PBFG是正方形,
∴PG=PB,
∵∠PQG=∠PMB=90°,∠QPG=∠MPB,
∴△PQG≌△PMB,
∴PQ=PM,
即m=﹣ m2+2m+6,
解得:m1=1+,m2=1﹣(舍),
∴P的橫坐標(biāo)為1+,
②當(dāng)F在y軸上時(shí),如圖3,過P作PM⊥x軸于M,
同理得:△PMB≌△BOF,
∴OB=PM=6,
即﹣m2+2m+6=6,
m1=0(舍),m2=4,
∴P的橫坐標(biāo)為4,
③當(dāng)F在y軸上時(shí),如圖4,此時(shí)P與C重合,
此時(shí)P的橫坐標(biāo)為0,
綜上所述,點(diǎn)P的橫坐標(biāo)為1+ 或4或0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn),過點(diǎn)做直線平行于軸,點(diǎn)關(guān)于直線對稱點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);
(2)點(diǎn)在直線上,且位于軸的上方,將沿直線翻折得到,若點(diǎn)恰好落在直線上,求點(diǎn)的坐標(biāo)和直線的解析式;
(3)設(shè)點(diǎn)在直線上,點(diǎn)在直線上,當(dāng)為等邊三角形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,將正方形ABCD沿x軸負(fù)方向平移a個(gè)單位長度后,點(diǎn)C恰好落在雙曲線在第一象限的分支上,則a的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一次函數(shù)的圖像.
(1)設(shè)它的圖像與軸軸分別交于、兩點(diǎn),求的長;
(2)求的面積;
(3)求點(diǎn)到直線的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M、N是平行四邊形ABCD對角線BD上兩點(diǎn).
(1)若BM=MN=DN,求證:四邊形AMCN為平行四邊形;
(2)若M、N為對角線BD上的動(dòng)點(diǎn)(均可與端點(diǎn)重合),設(shè)BD=12cm,點(diǎn)M由點(diǎn)B向點(diǎn)D勻速運(yùn)動(dòng),速度為2(cm/s),同時(shí)點(diǎn)N由點(diǎn)D向點(diǎn)B勻速運(yùn)動(dòng),速度為 a(cm/s),運(yùn)動(dòng)時(shí)間為t(s).若要使四邊形AMCN為平行四邊形,求a的值及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,平分交于點(diǎn)的垂直平分線交于點(diǎn),交于點(diǎn),若,則的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)與二次函數(shù)y=k(x2+x-1)的圖象交于點(diǎn)A(1,k)和點(diǎn)B(-1,-k).
(1)當(dāng)k=-2時(shí),求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)與二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍.
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時(shí),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線l上有A、B兩個(gè)碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點(diǎn)P處,此時(shí)從B碼頭測得小船在它的北偏東45°的方向.求此時(shí)小船到B碼頭的距離(即BP的長)和A、B兩個(gè)碼頭間的距離(結(jié)果都保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)α度到△A1B1C1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E. F.
(1)求證:△BCF≌△BA1D.
(2)當(dāng)∠C=α度時(shí),判定四邊形A1BCE的形狀并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com