【題目】如圖,直線y=﹣ x+3與坐標軸分別交于A,B兩點,與直線y=x交于點C,線段OA上的點Q以每秒1個單位長度的速度從點O出發(fā)向點A作勻速運動,運動時間為t秒,連接CQ.若△OQC是等腰直角三角形,則t的值為 (
A.2
B.4
C.2或3
D.2或4

【答案】D
【解析】解:∵由 ,得 , ∴C(2,2);
如圖1,當(dāng)∠CQO=90°,CQ=OQ,
∵C(2,2),
∴OQ=CQ=2,
∴t=2,
②如圖2,當(dāng)∠OCQ=90°,OC=CQ,
過C作CM⊥OA于M,
∵C(2,2),
∴CM=OM=2,
∴QM=OM=2,
∴t=2+2=4,
即t的值為2或4,
故選D.


【考點精析】掌握等腰直角三角形是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD與正方形OEFG中,點D和點F的坐標分別為(﹣3,2)和(1,﹣1),則這兩個正方形的位似中心的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一項工程,若由甲、乙兩公司合作18天可以完成,共需付施工費144000元,若甲、乙兩公司單獨完成此項工程,甲公司所用時間是乙公司的1.5倍,已知甲公司每天的施工費比乙公司每天的施工費少2000元.
(1)求甲、乙兩公司單獨完成此項工程,各需多少天?
(2)若由一個公司單獨完成這項工程,哪個公司的施工費較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具10月份銷售鉛筆100支,11、12兩個月銷售量連續(xù)增長,若月平均增長率為x,則該文具店12月份銷售鉛筆的支數(shù)是(  )

A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一次函數(shù)y=x+6,下列結(jié)論錯誤的是(
A.y隨x的增大而增大
B.函數(shù)圖象與坐標軸圍成的三角形面積為18
C.函數(shù)圖象不經(jīng)過第四象限
D.函數(shù)圖象與x軸正方形夾角為30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系xOy中,點A在第一象限,點B在x軸的正半軸上,AOB為正三角形,射線OCAB,在OC上依次截取點P1,P2,P3,…,Pn,使OP1=1,P1P2=3,P2P3=5,…,Pn﹣1Pn=2n﹣1(n為正整數(shù)),分別過點P1,P2,P3,…,Pn向射線OA作垂線段,垂足分別為點Q1,Q2,Q3,…,Qn,則點Qn的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,A、B兩點分別在x軸、y軸上,OA=3,OB=4,連接AB.點P在平面內(nèi),若以點P、A、B為頂點的三角形與△AOB全等(點P與點O不重合),則點P的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面四個整式中,不能表示圖中陰影部分面積的是( )

A.(x+3)(x+2)﹣2x
B.x(x+3)+6
C.3(x+2)+x2
D.x2+5x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是( 。

A.m2+m3m5B.m23m5

C.m5 ÷m2m3D.2m2n3mn26m2n2

查看答案和解析>>

同步練習(xí)冊答案