【題目】如圖(1),在四邊形中,,,動點從點出發(fā),沿,運動至點停止.設(shè)點運動的路程為的面積為,如果關(guān)于的函數(shù)圖象如圖(2)所示,則的面積是(

A.6B.5C.4D.3

【答案】D

【解析】

根據(jù)圖1可知,可分PBC上運動和PCD上運動分別討論,由此可得BCCD的值,進(jìn)而利用三角形面積公式可得的面積.

解:動點P從直角梯形ABCD的直角頂點B出發(fā),沿BCCD的順序運動,

當(dāng)PBC段運動,ABP面積yx的增大而增大;
當(dāng)PCD段運動,因為ABP的底邊不變,高不變,所以面積y不變化.

由圖2可知,當(dāng)0<x<2,yx的增大而增大;當(dāng)2<x<5,y的值不隨x變化而變化.

綜上所述,BC=2,CD=5-2=3,

.
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察與思考:閱讀下列材料,并解決后面的問題

在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過AADBCD(如圖(1)),則sinB=,sinC=,即ADcsinB,ADbsinC,于是csinBbsinC,即,同理有:,所以

即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.

根據(jù)上述材料,完成下列各題.

(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A   ;AC   ;

(2)自從去年日本政府自主自導(dǎo)“釣魚島國有化”鬧劇以來,我國政府靈活應(yīng)對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達(dá)B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,2.449)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩種機(jī)器人都被用來搬運化工原料,A型機(jī)器人比B型機(jī)器人每小時多搬運30kg,A型機(jī)器人搬運900kgB型機(jī)器人搬運600kg所用時間相等,兩種機(jī)器人每小時分別搬運多少化工原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別是BC邊,CD邊的中點,AE、AF分別交BD于點G,H,設(shè)△AGH的面積為S1,平行四邊形ABCD的面積為S2,則S1:S2的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC是∠AOB的平分線,點POC上且OP=4,∠AOB=60°,過點P的動直線DEOAD,交OBE,那么=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的一條角平分線.、分別在、、上,且四邊形是正方形.

1)求證:點的平分線上;

2)若,且正方形的面積為4,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當(dāng)△PMN周長取最小值時,則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.

(1)求證:四邊形OCAD是平行四邊形;

(2)填空:①當(dāng)∠B= 時,四邊形OCAD是菱形;

②當(dāng)∠B= 時,AD與相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察猜想:

RtABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把ABD繞點A逆時針旋轉(zhuǎn)90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是   ,位置關(guān)系是   

(2)探究證明:

在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結(jié)論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.

(3)拓展延伸:

如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°AC=,其他條件不變,過點DDFADCE于點F,請直接寫出線段CF長度的最大值.

查看答案和解析>>

同步練習(xí)冊答案