【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞直角頂點(diǎn)BB順時(shí)針旋轉(zhuǎn)900到BP/,已知∠AP/B=1350,P/A:P/C=1:3,則PB:P/A的值為________.

【答案】1:2

【解析】

如圖,連接AP,構(gòu)建全等三角形:△ABP≌△CBP(SAS),由該全等三角形的對(duì)應(yīng)邊相等得到AP=PC;如圖,連接PP,結(jié)合已知條件可以推知△APP是直角三角形,所以由勾股定理來求相關(guān)線段的長度即可.

如圖,連接AP,

∵BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°BP,

∴BP=BP,∠ABP+∠ABP=90°,

又∵△ABC是等腰直角三角形,

∴AB=BC,∠CBP+∠ABP=90°

∴∠ABP=∠CBP,

在△ABP和△CBP中,

∴△ABP≌△CBP(SAS),

∴AP=PC,

∵PA:PC=1:3,

∴AP=3PA,

連接PP,則△PBP是等腰直角三角形,

∴∠BPP=45°,PP=PB,

∵∠APB=135°,

∴∠APP=135°45°=90°,

∴△APP是直角三角形,

設(shè)PA=x,則AP=3x,

根據(jù)勾股定理,PP===2x,

∴PP=PB=2x,

解得PB=2x,

∴PA:PB=x:2x=1:2.

故答案是:1:2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形CAB中,CA=4,CAB=120°,DCA的中點(diǎn),P為弧BC上一動(dòng)點(diǎn)(不與C,B重合),則2PD+PB的最小值為( 。

A. B. C. 10 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)MN;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6AF=4,CD=3,則BE的長是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,AB=AC,點(diǎn)DBC的中點(diǎn),點(diǎn)EAD上.

1)求證:BE=CE;

2)如圖2,若BE的延長線交AC于點(diǎn)F,且BFAC,∠BAC=45°,原題設(shè)其他條件不變.求證:AB=BF+EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有010、2030的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購物券,可以重新在本商場消費(fèi),某顧客剛好消費(fèi)200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MNBC.設(shè)MN交ACB的平分線于點(diǎn)E,交ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC三個(gè)頂點(diǎn)坐標(biāo)分別是A1,3),B41),C44).

1)請按要求畫圖:畫出△ABC向左平移5個(gè)單位長度后得到的△A1B1C1;

畫出△ABC繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2

2)請寫出直線B1C1與直線B2C2的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:

問題:現(xiàn)有5個(gè)邊長為1的正方形,排列形式如圖①,請把它們分割后拼接成一個(gè)新的正方形,要求:畫出分割線并在正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長均為1)中用實(shí)線畫出拼接成的新正方形.小東同學(xué)的做法是:設(shè)新正方形的邊長為xx0),依題意,割補(bǔ)前后圖形的面積相等,有x25,解得,由此可知新正方形的邊長等于兩個(gè)小正方形組成的矩形對(duì)角線的長,于是,畫出如圖②所示的分割線,拼出如圖③所示的新正方形.

請你參考小東同學(xué)的做法,解決如下問題:

現(xiàn)有10個(gè)邊長為1的正方形,排列形式如圖④,請把它們分割后拼接成一個(gè)新的正方形,要求:在圖④中畫出分割線,并在圖⑤的正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長均為1)中用實(shí)線畫出拼接成的新正方形.(說明:直接畫出圖形,不要求寫分析過程.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在規(guī)格為8×8的邊長為1個(gè)單位的正方形網(wǎng)格中(每個(gè)小正方形的邊長為1),△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,且直線m、n互相垂直.

(1)畫出△ABC關(guān)于直線n的對(duì)稱圖形△A′B′C′;

(2)直線m上存在一點(diǎn)P,使△APB的周長最;

在直線m上作出該點(diǎn)P;(保留畫圖痕跡)

②△APB的周長的最小值為   .(直接寫出結(jié)果)

查看答案和解析>>

同步練習(xí)冊答案