(2008•荊州)將一直角三角板與兩邊平行的紙條如圖所示放置,下列結(jié)論:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正確的個(gè)數(shù)是( )

A.1
B.2
C.3
D.4
【答案】分析:根據(jù)兩直線平行同位角相等,內(nèi)錯(cuò)角相等,同旁?xún)?nèi)角互補(bǔ),及直角三角板的特殊性解答.
解答:解:∵紙條的兩邊平行,∴(1)∠1=∠2;(2)∠3=∠4;(4)∠4+∠5=180°均正確;
又∵直角三角板與紙條下線相交的角為90°,
∴(3)∠2+∠4=90°,正確.
故選D.
點(diǎn)評(píng):本題考查平行線的性質(zhì),正確識(shí)別“三線八角”中的同位角、內(nèi)錯(cuò)角、同旁?xún)?nèi)角是正確答題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•荊州)如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點(diǎn)在第二象限,A(1,0),AB交y軸于E,將紙片過(guò)E點(diǎn)折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開(kāi)還原沿EF剪開(kāi)得到四邊形BCFE,然后把四邊形BCFE從E點(diǎn)開(kāi)始沿射線EA平移,至B點(diǎn)到達(dá)A點(diǎn)停止.設(shè)平移時(shí)間為t(s),移動(dòng)速度為每秒1個(gè)單位長(zhǎng)度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長(zhǎng);
(2)是否存在某一時(shí)刻t使平移中直角頂點(diǎn)C經(jīng)過(guò)拋物線y=x2+4x+3的頂點(diǎn)?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由;
(3)直接寫(xiě)出S與t的函數(shù)關(guān)系式及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年湖北省荊州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•荊州)如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點(diǎn)在第二象限,A(1,0),AB交y軸于E,將紙片過(guò)E點(diǎn)折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開(kāi)還原沿EF剪開(kāi)得到四邊形BCFE,然后把四邊形BCFE從E點(diǎn)開(kāi)始沿射線EA平移,至B點(diǎn)到達(dá)A點(diǎn)停止.設(shè)平移時(shí)間為t(s),移動(dòng)速度為每秒1個(gè)單位長(zhǎng)度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長(zhǎng);
(2)是否存在某一時(shí)刻t使平移中直角頂點(diǎn)C經(jīng)過(guò)拋物線y=x2+4x+3的頂點(diǎn)?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由;
(3)直接寫(xiě)出S與t的函數(shù)關(guān)系式及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《圖形認(rèn)識(shí)初步》(02)(解析版) 題型:選擇題

(2008•荊州)將一直角三角板與兩邊平行的紙條如圖所示放置,下列結(jié)論:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正確的個(gè)數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年湖北省荊州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2008•荊州)將一直角三角板與兩邊平行的紙條如圖所示放置,下列結(jié)論:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正確的個(gè)數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案