【題目】平面直角坐標(biāo)系中,已知A(8,0),△AOP為等腰三角形且面積為16,滿足條件的P點有( 。
A. 4個 B. 8個 C. 10個 D. 12個
【答案】C
【解析】
使△AOP為等腰三角形,只需分兩種情況考慮:OA當(dāng)?shù)走吇騉A當(dāng)腰.當(dāng)OA是底邊時,有2個點;當(dāng)OA是腰時,有8個點,即可得出答案.
∵A(8,0),
∴OA=8,
設(shè)△AOP的邊OA上的高是h,
則×8×h=16,
解得:h=4,
在x軸的兩側(cè)作直線a和直線b都和x軸平行,且到x軸的距離都等于4,如圖:
①以A為圓心,以8為半徑畫弧,交直線a和直線b分別有兩個點,即共4個點符合,
②以O為圓心,以8為半徑畫弧,交直線a和直線b分別有兩個點,即共4個點符合,
③作AO的垂直平分線分別交直線a、b于一點,即共2個點符合,
4+4+1+1=10.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解員工對“六五”普法知識的知曉情況,從本公司隨機(jī)選取40名員工進(jìn)行普法知識考查,對考查成績進(jìn)行統(tǒng)計(成績均為整數(shù),滿分100分),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計表.解答下列問題:
組別 | 分?jǐn)?shù)段/分 | 頻數(shù)/人數(shù) | 頻率 |
1 | 50.5~60.5 | 2 | a |
2 | 60.5~70.5 | 6 | 0.15 |
3 | 70.5~80.5 | b | c |
4 | 80.5~90.5 | 12 | 0.30 |
5 | 90.5~100.5 | 6 | 0.15 |
合計 | 40 | 1.00 |
(1)表中a= , b= , c=;
(2)請補(bǔ)全頻數(shù)分布直方圖;
(3)該公司共有員工3000人,若考查成績80分以上(不含80分)為優(yōu)秀,試估計該公司員工“六五”普法知識知曉程度達(dá)到優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.
(1)線段AB,BC,AC的長分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖2.
請從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長;
②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標(biāo);若不存在,請說明理由.
B:①求線段DE的長;
②在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形中,,直線過點.
(1)當(dāng)時,如圖1,分別過點和作直線于點,直線于點.與是否全等,并說明理由;
(2)當(dāng),時,如圖2,點與點關(guān)于直線對稱,連接、.點是上一點,點是上一點,分別過點、作直線于點,直線于點,點從點出發(fā),以每秒的速度沿路徑運動,終點為.點從點出發(fā),以每秒的速度沿路徑運動,終點為.點、同時開始運動,各自達(dá)到相應(yīng)的終點時停止運動,設(shè)運動時間為秒.
①當(dāng)為等腰直角三角形時,求的值;
②當(dāng)與全等時,求的值.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AB=BC,D為斜邊AC延長線上一點,過D點作BC的垂線交其延長線于點E,在AB的延長線上取一點F,使得BF=CE,連接EF.
(1)若AB=2,BF=3,求AD的長度;
(2)G為AC中點,連接GF,求證:∠AFG+∠BEF=∠GFE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本的作業(yè)題中有這樣一道題:把一張頂角為36°的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,你能辦到嗎?請畫示意圖說明剪法.
我們有多少種剪法,圖1是其中的一種方法:定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的三分線.
請你在圖2中用三種不同的方法畫出頂角為45°的等腰三角形的三分線,并標(biāo)注每個等腰三角形頂角的度數(shù);(若兩種方法分得的三角形成3對全等三角形,則視為同一種)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,則以下結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③點D在∠BAC的平分線上.正確的是( 。
A. ① B. ② C. ①② D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com