【題目】某公司根據(jù)市場需求銷售A、B兩種型號的凈水器,每臺A型凈水器比每臺B型凈水器進(jìn)價多200元,用5萬元購進(jìn)A型凈水器與用4.5萬元購進(jìn)B型凈水器的數(shù)量相等.

1)求每臺A型、B型凈水器的進(jìn)價各是多少元?

2)該公司計劃用不超過9.8萬元購進(jìn)A,B兩種型號的凈水器共50臺,其中A型、B型凈水器每臺售價分別為2500元、2180元,設(shè)A型凈水器為x臺.

x的取值范圍.

若公司決定從銷售A型凈水器的利潤中每臺捐獻(xiàn)a100a150)元給貧困村飲水改造愛心工程,求售完這50臺凈水器后獲得的最大利潤.

【答案】1A型凈水器每臺的進(jìn)價為2000元,B型凈水器每臺的進(jìn)價為1800元;(2x的取值范圍為:0x40且為x整數(shù),售完這50臺凈水器后獲得的最大利潤為2380040a

【解析】

1)根據(jù)題意可以列出相應(yīng)的分式方程,從而可以解答本題;

2根據(jù)購買資金=A型凈水器的進(jìn)價×購進(jìn)數(shù)量+B型凈水器的進(jìn)價×購進(jìn)數(shù)量結(jié)合購買資金不超過9.8萬元,即可得出關(guān)于x的一元一次不等式,解之即可得出x的取值范圍;

由總利潤=每臺A型凈水器的利潤×購進(jìn)數(shù)量+每臺B型凈水器的利潤×購進(jìn)數(shù)量﹣a×購進(jìn)A型凈水器的數(shù)量,即可得出w關(guān)于x的函數(shù)關(guān)系式,再利用一次函數(shù)的性質(zhì)即可解決最值問題.

1)設(shè)A型凈水器每臺的進(jìn)價為m元,則B型凈水器每臺的進(jìn)價為(m200)元,

根據(jù)題意得:

解得:m2000

經(jīng)檢驗,m2000是分式方程的解,∴m2001800

答:A型凈水器每臺的進(jìn)價為2000元,B型凈水器每臺的進(jìn)價為1800元;

2根據(jù)題意得:2000x+180050x)≤98000,解得:x40

x的取值范圍為:0x40且為x整數(shù);

總利潤w=(25002000x+21801800)(50x)﹣ax=(120ax+19000,

100a150

i).當(dāng)100a120時,120a0wx增大而增大,

∴當(dāng)x40時,w取最大值,最大值為(120a)×40+190002380040a,

ii).當(dāng)a120時,w為一個定值w0+1900019000,

iii)當(dāng)120a150時,120a0wx的增大而減小,

∴當(dāng)x0時,w取最大值,其最大值為:(120a)×0+1900019000,

綜上,當(dāng)100a120時,190002380040a19800,

∴售完這50臺凈水器后獲得的最大利潤為2380040a

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)興趣小組想利用所學(xué)的知識了解某廣告牌的高度,已知CD2m.經(jīng)測量,得到其它數(shù)據(jù)如圖所示.其中∠CAH37°,∠DBH67°,AB10m,請你根據(jù)以上數(shù)據(jù)計算GH的長.(參考數(shù)據(jù)tan67° tan37°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是菱形ABCD對角線ACBD的交點,CD4cm,OD3cm;過點CCEDB,過點BBEACCEBE相交于點E

1)求證:四邊形OBEC為矩形;

2)求四邊形ABEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BCA=90,AC=6,BC=8,DAB的中點,將△ACD沿直線CD折疊得到△ECD,連接BE,則線段BE的長等于(

A.5B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一根長40cm的金屬棒,欲將其截成x7cm長的小段和y9cm長的小段,剩余部分作廢料處理.若使廢料最少,則正整數(shù)x應(yīng)為_

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)yx2+bx+c的圖象與x軸交于AB兩點,A點在原點的左側(cè),B點的坐標(biāo)為(3,0),與y軸交于點C0,﹣3).

1)求二次函數(shù)解析式;

2)若點Q為拋物線上一點,且SABQSACQ,求點Q的坐標(biāo);

3)若直線lymx+n與拋物線有兩個交點M,NMN的左邊),P為拋物線上一動點(不與M,N重合).過PPH平行于y軸交直線l于點H,若5,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線兩點(的左側(cè)),且,,與軸交于,拋物線的頂點坐標(biāo)為.

1)求兩點的坐標(biāo);

2)求拋物線的解析式;

3)過點作直線軸,交軸于點,點是拋物線上、兩點間的一個動點(點不與兩點重合),與直線分別交于點、,當(dāng)點運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點是原點,四邊形是矩形,點,點.以點為中心,順時針旋轉(zhuǎn)矩形,得到矩形,點的對應(yīng)點分別為.

1)如圖①,當(dāng)點落在邊上時,求點的坐標(biāo);

2)如圖②,當(dāng)點落在線段上時,交于點.求點的坐標(biāo);

3)記為矩形對角線的交點,的面積,求的取值范圍(直接寫出結(jié)果即可).

查看答案和解析>>

同步練習(xí)冊答案