【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①4ac<b2; ②3a+c>0;③方程 的兩個根是x1=﹣1,x2=3;④當(dāng)y>0時,x的取值范圍是﹣1<x<3⑤當(dāng)x>0時,y隨x的增大而減小.其中結(jié)論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
【答案】B
【解析】分析:①根據(jù)拋物線與x軸的交點(diǎn)個數(shù)判斷;②由對稱軸方程得到a與b的關(guān)系,再根據(jù)x=-1時的函數(shù)值變形;③拋物線與x軸的兩個交點(diǎn)關(guān)于拋物線的對稱軸對稱;④根據(jù)函數(shù)值大于0確定自變量的取值范圍;⑤二次函數(shù)的增減性在對稱軸的左側(cè)與右側(cè)不相同.
詳解:①因為拋物線與x軸有兩個交點(diǎn),所以b2-4ac>0,即4ac<b2,則①正確;
②因為對稱軸為x=1,所以,則b=-2a,當(dāng)x=-1時,a-b+c=0,所以a+2a+c=0,則3a+c=0,則②錯誤;
③因為x1+x2=2,x1=-1,所以x2=3,則③正確;
④拋物線與x軸的兩個交點(diǎn)的坐標(biāo)是(-1,0),(3,0),開口向下,所以當(dāng)y>0時,x的取值范圍是﹣1<x<3,則④正確;
⑤因為拋物線開口向下,所以當(dāng)x>1時,y隨x的增大而減小,則⑤錯誤.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A(x1,y1)、B(x2,y2)是拋物線y=2x2+4x﹣2上的點(diǎn),坐標(biāo)系原點(diǎn)O位于線段AB的中點(diǎn)處,則AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機(jī)可以計算行走的步數(shù)與相應(yīng)的能量消耗.對比手機(jī)數(shù)據(jù)發(fā)現(xiàn):小瓊步行步與小剛步行步消耗的能量相同,若每消耗千卡能量小瓊行走的步數(shù)比小剛多步,求小剛每消耗千卡能量需要行走多少步?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板(,)按圖1方式擺放(即與重合、與共線).
(1)如圖2,當(dāng)繞點(diǎn)旋轉(zhuǎn)至時,求的度數(shù):
(2)若繞點(diǎn)以每秒的速度順時針旋轉(zhuǎn),回到起始位置停止,設(shè)旋轉(zhuǎn)時間為t,當(dāng)t為何值時,(與始終不共線);
(3)若繞點(diǎn)以每秒的速度順時針旋轉(zhuǎn)的同時,也繞點(diǎn)以每秒的速度順時針旋轉(zhuǎn),當(dāng)回到起始位置時全都停止旋轉(zhuǎn).設(shè)旋轉(zhuǎn)時間為t,在運(yùn)動過程中,當(dāng)t為何值時,的邊所在直線恰好平分?試直接寫出t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將進(jìn)價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實(shí)惠,每臺冰箱應(yīng)降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:小明遇到這樣一個問題:
如圖一,△ABC中,∠A=90°,AB=AC,BD平分∠ABC,猜想線段AD與DC數(shù)量關(guān)系.小明發(fā)現(xiàn)可以用下面方法解決問題:作DE⊥BC交BC于點(diǎn)E:
(1)根據(jù)閱讀材料可得AD與DC的數(shù)量關(guān)系為__________.
(2)如圖二,△ABC中,∠A=120°,AB=AC,BD平分∠ABC,猜想線段AD與DC的數(shù)量關(guān)系,并證明你的猜想.
(3)如圖三,△ABC中,∠A=100°,AB=AC,BD平分∠ABC,猜想線段AD與BD、BC的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在Rt△ABC中,∠C=90°,AB=10,BC=6,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC向終點(diǎn)C運(yùn)動,在AB上以每秒5個單位長度的速度運(yùn)動,在BC上以每秒3個單位長度的速度運(yùn)動,點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以每秒個單位長度的速度運(yùn)動,P,Q兩點(diǎn)同時出發(fā),當(dāng)點(diǎn)P停止時,點(diǎn)Q也隨之停止.設(shè)點(diǎn)P運(yùn)動的時間為t秒.
(1)求線段AQ的長;(用含t的代數(shù)式表示)
(2)連結(jié)PQ,當(dāng)PQ與△ABC的一邊平行時,求t的值;
(3)如圖②,過點(diǎn)P作PE⊥AC于點(diǎn)E,以PE,EQ為鄰邊作矩形PEQF.設(shè)矩形PEQF與△ABC重疊部分圖形的面積為S.直接寫出點(diǎn)P在運(yùn)動過程中S與t之間的函數(shù)關(guān)系式和自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,,點(diǎn),分別在、上,,,相交于點(diǎn),若圖中陰影部分的面積與正方形的面積之比為,則的周長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,以點(diǎn)A為圓心,1為半徑作圓,E是⊙A上的任意一點(diǎn),將DE繞點(diǎn)D按逆時針旋轉(zhuǎn)90°,得到DF,連接AF,則AF的最小值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com