【題目】在圖1,2,3中,已知□ABCD,∠ABC=120°,點E為線段BC上的動點,連接AE,以AE為邊向上作菱形AEFG,且∠EAG=120°.
(1)如圖1,當點E與點B重合時,∠CEF=______°;
(2)如圖2,連接AF.
①填空:∠FAD_______∠EAB(填“>”,“=”,“<”);
②求證:點F在∠ABC的平分線上;
(3)如圖3,連接EG,DG,并延長DG交BA的延長線于點H,當四邊形AEGH是平行四邊形時,求的值.
【答案】(1)60;(2)①=,②見解析;(3)3
【解析】
(1)根據(jù)菱形的性質計算即可;
(2)①證明∠DAB=∠FAE=60°,根據(jù)角的運算解答;
②作FM⊥BC于M,FN⊥BA交BA的延長線于N,證明△FAN≌△FME,根據(jù)全等三角形的性質得到FN=FM,根據(jù)角平分線的判定定理證明結論;
(3)根據(jù)直角三角形的性質得到GH=2AH,證明四邊形ABEH為菱形,根據(jù)菱形的性質計算,得到答案.
解:(1)當E與點B重合時,∠EAG=120°,∵四邊形GABF為菱形,
∴∠ABF=60°,∠CEF=120°-60°=60°
故答案為60°
(2)① =
∵四邊形GABF為菱形;∴AF平分∠GAE,∠FAE=120°÷2=60°
∠DAB=60°,∠FAD=60°-∠DAE;∠EAB=60°-∠DAE
∴∠FAD=∠EAB
②證明:過F點做AB和BC的垂線垂足分別為M,N
由①可得三角形AEF為等邊三角形
∠FAN=180°-60°-∠EAB=120°-∠EAB
∠FEM=60°+∠AEB=60°+(180°-120°-∠EAB)=120°-∠EAB
∴∠FAN=∠FEM
在FNA和FME中
∴△FNA≌△FME(AAS)
∴FN=FM,
∴F在∠ABC的角平分線上
(3)當四邊形AEGH為平行四邊形時,可得GE//BH;
由四邊形AEFG為菱形,可得GE平分∠FEA,∠GEA=30°
∴∠EAB=30°,AEB為等腰三角形;不妨設AB=x;可得AE=
∵AE=GH;AGH為等腰三角形∴AH==3x
∠DAB=60°,∠H=30°,∴HAD為等腰三角形,可得AD=3x
BC=AD=3x
∴
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的頂點A,B分別在x軸負半軸,y軸負半軸上,AD交y軸于點F,E為CD的中點.若OB=1,BD=2EF時,反比例函數(shù)y=的圖象經過D,E兩點,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊△AB1C1;再以等邊△AB1C1的B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊△AB2C2;再以等邊△AB2C2的B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊△AB3C3;…,記△B1CB2的面積為S1,△B2C1B3的面積為S2,△B3C2B4的面積為S3,如此下去,則Sn=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩同學玩轉盤游戲時,把質地相同的兩個盤A、B分別平均分成2份和3份,并在每一份內標有數(shù)字如圖.游戲規(guī)則:甲、乙兩同學分別同時轉動兩個轉盤各1次,當轉盤停止后,指針所在區(qū)域的數(shù)字之積為偶數(shù)時甲勝;數(shù)字之積為奇數(shù)時乙勝.若指針恰好在分割線上,則需要重新轉動轉盤.
(1)用樹狀圖或列表的方法,求甲獲勝的概率;
(2)這個游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點O是邊AC上一個動點,過點O作直線EF∥BC分別交∠ACB、外角∠ACD的平分線于點E、F.
(1)若CE=8,CF=6,求OC的長;
(2)連接AE、AF.問:當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將四根長度相等的細木條首尾相接,用釘子釘成四邊形ABCD,轉動這個四邊形,使它形狀改變,當∠B=90°時,如圖1,測得AC=2,當∠B=60°時,如圖2,則BD=_________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角三角形ABC中,∠ACB=900,AB=10, BC=6,在線段AB上取一點D,作DF⊥AB交AC于點F.現(xiàn)將△ADF沿DF折疊,使點A落在線段DB上,對應點記為A1;AD的中點E的對應點記為E1.若△E1FA1∽△E1BF,則AD= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是實驗室中的一種擺動裝置,BC在地面上,支架ABC是底邊為BC的等腰直角三角形,擺動臂AD可繞點A旋轉,擺動臂DM可繞點D旋轉,AD=30,DM=10.
(1)在旋轉過程中,
①當A,D,M三點在同一直線上時,求AM的長.
②當A,D,M三點為同一直角三角形的頂點時,求AM的長.
(2)若擺動臂AD順時針旋轉90°,點D的位置由△ABC外的點D1轉到其內的點D2處,連結D1D2,如圖2,此時∠AD2C=135°,CD2=60,求BD2的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com