精英家教網 > 初中數學 > 題目詳情
如圖,已知AD為⊙O的切線,⊙O的直徑是AB=2,弦AC=1,則∠CAD=______度.
∵AB是圓的直徑,
∴∠C=90°;
又AB=2,AC=1,
∴∠B=30°,
∵AD為⊙O的切線,
∴∠CAD=∠B=30°.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

如圖,AB切⊙O于點A,BO交⊙O于點C,點D是
CmA
上異于點C、A的一點,若∠ABO=32°,則∠ADC的度數是______度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,PA、PB切⊙O于A、B,∠APB=60゜,PA=4,則⊙O的半徑為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知:如圖,AB切⊙O于點B,OA與⊙O交于點C,點P在⊙O上,若∠BAC=42°,則∠BPC的度數為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,兩個半圓如圖放置,大半圓中長為8cm的弦AB平行于直徑CD,且與小半圓相切,則圖中陰影部分的面積為______cm2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC與⊙O相切線于點B,AC與⊙O相交于點D,E為BC的中點,連接DE.
(1)求證:直線DE是⊙O的切線;
(2)若∠BED=70°,⊙O的半徑為2,求劣弧BD的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,直線AP是⊙O的切線,點P為切點,∠APQ=∠CPQ,則圖中與CQ相等的線段是(  )
A.PQB.PBC.PCD.BQ

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O,交AB于D,E為BC中點,連ED.
(1)求證:ED是⊙O的切線;
(2)若⊙O半徑為3,ED=4,求AB長?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在等腰梯形ABCD中,ADBC,AB=DC,且BC=2.以CD為直徑作⊙O1交AD于點E,過點E作EF⊥AB于點F.建立如圖所示的平面直角坐標系,已知A、B兩點坐標分別為A(2,0),B(0,2
3
).
(1)求C,D兩點的坐標;
(2)求證:EF為⊙O1的切線;
(3)線段CD上是否存在點P,使以點P為圓心,PD為半徑的⊙P與y軸相切.如果存在,請求出P點坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案