在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點(diǎn)D.
(1)求線段AD的長度;
(2)點(diǎn)E是線段AC上的一點(diǎn),試問當(dāng)點(diǎn)E在什么位置時(shí),直線ED與⊙O相切?請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”。
(1)概念理解
如圖1,在四邊形ABCD中,添加一個(gè)條件,使得四邊形ABCD是“等鄰邊四邊形”,請(qǐng)寫出你添加的一個(gè)條件;2-1-c-n-j-y
(2)問題探究
①小紅猜想:對(duì)角線互相平分的“等鄰邊四邊形”是菱形,她的猜想正確嗎?請(qǐng)說明理由;
②如圖2,小紅畫了一個(gè)Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并將Rt△ABC沿∠B的平分線BB’方向平移得到△A’B’C’,連結(jié)AA’,BC’。小紅要使平移后的四邊形ABC’A’是“等鄰邊四邊形”,應(yīng)平移多少距離(即線段BB’的長)?
(3)應(yīng)用拓展
如圖3,“等鄰邊四邊形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD為對(duì)角線,AC=AB。試探究BC,CD,BD的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
二次函數(shù)的圖象如圖所示,則一次函數(shù)的圖象不經(jīng)過
A.第一象限 B.第二象限
C.第三象限 D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,以點(diǎn)、、為頂點(diǎn)的三角形向上平移3個(gè)單位,得到△(點(diǎn)分別為點(diǎn)的對(duì)應(yīng)點(diǎn)),然后以點(diǎn)為中心將△順時(shí)針旋轉(zhuǎn),得到△(點(diǎn)分別是點(diǎn)的對(duì)應(yīng)點(diǎn)),則點(diǎn)的坐標(biāo)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等.下圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)、銷售價(jià)y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請(qǐng)解釋圖中點(diǎn)D的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義.
(2)求線段AB所表示的y1與x之間的函數(shù)表達(dá)式.
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時(shí),獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,以點(diǎn)、、為頂點(diǎn)的三角形向上平移3個(gè)單位,得到△(點(diǎn)分別為點(diǎn)的對(duì)應(yīng)點(diǎn)),然后以點(diǎn)為中心將△順時(shí)針旋轉(zhuǎn),得到△(點(diǎn)分別是點(diǎn)的對(duì)應(yīng)點(diǎn)),則點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com