精英家教網 > 初中數學 > 題目詳情
14、如圖,把△ABC繞點C順時針旋轉22度,得△A1B1C,則直線AB與A1B1所成的銳角為
22
度.
分析:根據旋轉的定義,分析圖形間的關系,易得△A1B1C,直線AB與A1B1所成的銳角為∠BCB1,進而可得答案.
解答:解:根據題意,BC的對應邊是CB1,旋轉的度數即∠BCB1度數,
即把△ABC繞點C順時針旋轉22°,
進而可得△A1B1C,直線AB與A1B1所成的銳角為∠BCB1,即22°.
點評:本題考查旋轉的性質:旋轉變化前后,對應點到旋轉中心的距離相等以及每一對對應點與旋轉中心連線所構成的旋轉角相等.要注意旋轉的三要素:①定點-旋轉中心;②旋轉方向;③旋轉角度.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

9、如圖,把△ABC繞點C順時針旋轉35°后,得到△A′B′C,A′B′交AC于點D,若∠A′DC=90°,則∠A的度數是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

18、如圖,把△ABC繞點A順時針旋轉120°得到△ADE,如果∠CAD=50°,則∠DAE=
70
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,把△ABC繞點C順時針旋轉43°,得到△A′B′C,A′B′交AC于點D,若∠A′DC=90°,則∠A=
47°
47°

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,把△ABC繞點A按順時針方向旋轉90°到△AB′C′.
(1)畫出△AB′C′;
(2)點C′的坐標為
 
;
(3)求CC′的長.

查看答案和解析>>

同步練習冊答案