【題目】已知P是⊙O外一點(diǎn),PO交⊙O于點(diǎn)C,OC=CP=2,弦AB⊥OC,∠AOC的度數(shù)為60°,連接PB.
(1)求BC的長;
(2)求證:PB是⊙O的切線.
【答案】(1)BC=2;(2)見解析
【解析】
試題分析:(1)連接OB,根據(jù)已知條件判定△OBC的等邊三角形,則BC=OC=2;
(2)欲證明PB是⊙O的切線,只需證得OB⊥PB即可.
(1)解:如圖,連接OB.
∵AB⊥OC,∠AOC=60°,
∴∠OAB=30°,
∵OB=OA,
∴∠OBA=∠OAB=30°,
∴∠BOC=60°,
∵OB=OC,
∴△OBC的等邊三角形,
∴BC=OC.
又OC=2,
∴BC=2;
(2)證明:由(1)知,△OBC的等邊三角形,則∠COB=60°,BC=OC.
∵OC=CP,
∴BC=PC,
∴∠P=∠CBP.
又∵∠OCB=60°,∠OCB=2∠P,
∴∠P=30°,
∴∠OBP=90°,即OB⊥PB.
又∵OB是半徑,
∴PB是⊙O的切線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,補(bǔ)充條件后仍不一定能保證△ABC≌△A′B′C′,則補(bǔ)充的這個條件是( )
A. BC=B′C′ B. ∠A=∠A′ C. AC=A′C′ D. ∠C=∠C′
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=(x+2)2+3的頂點(diǎn)坐標(biāo)是( )
A.(﹣2,3) B.(2,3)
C.(﹣2,﹣3) D.(2,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為( )
A.6 B.12 C.32 D.64
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a>b,則下列式子正確的是( )
A. -2015a>-2015b B. 2015a<2015b
C. 2015-a>2015-b D. a-2015>b-2015
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,則下列結(jié)論正確的是( )
A.∠E=2∠K
B.BC=2HI
C.六邊形ABCDEF的周長=六邊形GHIJKL的周長
D.S六邊形ABCDEF=2S六邊形GHIJKL
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)B在y軸的正半軸上,點(diǎn)A在反比例函數(shù)y=(k>0,x>0)的圖象上,點(diǎn)D的坐標(biāo)為(4,3).
(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的頂點(diǎn)D落在函數(shù)y=(k>0,x>0)的圖象上時,求菱形ABCD沿x軸正方向平移的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com