(12分)如圖,點A(m,m+1),B(m+3,m-1)都在反比例函數(shù)的圖象上.
(1)求m,k的值;
(2)如果M為x軸上一點,N為y軸上一點,
以點A,B,M,N為頂點的四邊形是平行四邊形,
試求直線MN的函數(shù)表達(dá)式.
解:(1)由題意可知,.
解,得 m=3. ………………………………3分
∴ A(3,4),B(6,2);
∴ k=4×3=12. ……………………………4分
(2)存在兩種情況,如圖:
①當(dāng)M點在x軸的正半軸上,N點在y軸的正半軸
上時,設(shè)M1點坐標(biāo)為(x1,0),N1點坐標(biāo)為(0,y1).
∵ 四邊形AN1M1B為平行四邊形,
∴ 線段N1M1可看作由線段AB向左平移3個單位,
再向下平移2個單位得到的(也可看作向下平移2個單位,再向左平移3個單位得到的).
由(1)知A點坐標(biāo)為(3,4),B點坐標(biāo)為(6,2),
∴ N1點坐標(biāo)為(0,4-2),即N1(0,2);
M1點坐標(biāo)為(6-3,0),即M1(3,0).
設(shè)直線M1N1的函數(shù)表達(dá)式為,把x=3,y=0代入,解得.
∴ 直線M1N1的函數(shù)表達(dá)式為.
②當(dāng)M點在x軸的負(fù)半軸上,N點在y軸的負(fù)半軸上時,設(shè)M2點坐標(biāo)為(x2,0),N2點坐標(biāo)為(0,y2).
∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,
∴ N1M1∥M2N2,N1M1=M2N2.
∴ 線段M2N2與線段N1M1關(guān)于原點O成中心對稱.
∴ M2點坐標(biāo)為(-3,0),N2點坐標(biāo)為(0,-2).
設(shè)直線M2N2的函數(shù)表達(dá)式為,把x=-3,y=0代入,解得,
∴ 直線M2N2的函數(shù)表達(dá)式為.
所以,直線MN的函數(shù)表達(dá)式為或.
解析
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本題12分)如圖,點O是等邊△ABC內(nèi)一點,D是△ABC外的一點, ∠AOB= 110°,
∠BOC= ,△BOC ≌△ADC,∠OCD=60°,連接OD。
(1)求證:△OCD是等邊三角形;
(2)當(dāng)=150°時,試判斷△AOD 的形狀,并說明理由;
(3)探究:當(dāng)為多少度時,△AOD是等腰三角形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市蕭山區(qū)臨浦片八年級上學(xué)期期中質(zhì)量檢測數(shù)學(xué)卷 題型:解答題
(本題12分)如圖,點O是等邊△ABC內(nèi)一點,D是△ABC外的一點, ∠AOB= 110°,
∠BOC= ,△BOC ≌△ADC,∠OCD=60°,連接OD。
(1)求證:△OCD是等邊三角形;
(2)當(dāng)=150°時,試判斷△AOD 的形狀,并說明理由;
(3)探究:當(dāng)為多少度時,△AOD是等腰三角形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆浙江省杭州市蕭山區(qū)臨浦片八年級上學(xué)期期中質(zhì)量檢測數(shù)學(xué)卷 題型:解答題
(本題12分)如圖,點O是等邊△ABC內(nèi)一點,D是△ABC外的一點, ∠AOB= 110°,
∠BOC= ,△BOC ≌△ADC,∠OCD=60°,連接OD。
(1)求證:△OCD是等邊三角形;
(2)當(dāng)=150°時,試判斷△AOD 的形狀,并說明理由;
(3)探究:當(dāng)為多少度時,△AOD是等腰三角形。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com