【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于A(-1,n),B(2,-1)兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱(chēng),求△ABD的面積.
【答案】(1)一次函數(shù)的表達(dá)式為y=-x+1,反比例函數(shù)的表達(dá)式為y=-;(2)S△ABD=3.
【解析】
(1)先把B點(diǎn)坐標(biāo)代入中求出m,得到反比例函數(shù)解析式為,再利用解析式確定A點(diǎn)坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式即可;
(2)先利用一次函數(shù)解析式確定,利用關(guān)于x軸對(duì)稱(chēng)的性質(zhì)得到,則軸,然后根據(jù)三角形面積公式計(jì)算即可;
解:(1)∵反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)B(2,-1),
∴m=-2.……
∵點(diǎn)A(-1,n)在的圖象上,∴n=2.∴A(-1,2).
把點(diǎn)A,B的坐標(biāo)代入y=kx+b,得
解得,
∴一次函數(shù)的表達(dá)式為y=-x+1,反比例函數(shù)的表達(dá)式為;
(2)∵直線y=-x+1交y軸于點(diǎn)C,∴C(0,1).
∵點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱(chēng),∴D(0,-1).∵B(2,-1),∴BD∥x軸.
∴S△ABD=×2×3=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,tan∠B=2,∠ACB=45°,AD⊥BC于點(diǎn)D,CE⊥AB于點(diǎn)E,AD、CE交于點(diǎn)F,若AC=5,則線段EF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年10月1日是新中國(guó)成立70周年.某學(xué)校國(guó)慶節(jié)后,為了調(diào)查學(xué)生對(duì)這場(chǎng)閱兵儀式的關(guān)注情況,在全校組織了一次全體學(xué)生都參加的“閱兵儀式有關(guān)知識(shí)”的考試,批改試卷后,學(xué)校政教處隨機(jī)抽取了部分學(xué)生的考卷進(jìn)行成績(jī)統(tǒng)計(jì),發(fā)現(xiàn)成績(jī)最低是51分,最高是100分,根據(jù)統(tǒng)計(jì)結(jié)果,繪制了如下尚不完整的統(tǒng)計(jì)圖表.
調(diào)查結(jié)果頻數(shù)分布表
分?jǐn)?shù)段/分 | 頻數(shù) | 頻率 |
0.1 | ||
18 | 0.18 | |
0.25 | ||
35 | ||
12 | 0.12 |
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1) ;
(2)若把上面頻數(shù)分布表中的信息畫(huà)在扇形統(tǒng)計(jì)圖內(nèi),則所在扇形圓心角的度數(shù)是 ;
(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;
(4)若該校有1200名學(xué)生,請(qǐng)估計(jì)該校分?jǐn)?shù)在范圍的學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)興趣活動(dòng)課上,小致將等腰的底邊與直線重合.
(1)如圖,在中,,點(diǎn)在邊所在的直線上移動(dòng),根據(jù)“直線外一點(diǎn)到直線上所有點(diǎn)的連線中垂線段最短”,小致發(fā)現(xiàn)的最小值是____________.
(2)為進(jìn)一步運(yùn)用該結(jié)論,在(1)的條件下,小致發(fā)現(xiàn),當(dāng)最短時(shí),如圖,在中,作平分交于點(diǎn)點(diǎn)分別是邊上的動(dòng)點(diǎn),連結(jié)小致嘗試探索的最小值,小致在上截取使得連結(jié)易證,從而將轉(zhuǎn)化為轉(zhuǎn)化到(1)的情況,則的最小值為 ;
(3)解決問(wèn)題:如圖,在中,,點(diǎn)是邊上的動(dòng)點(diǎn),連結(jié)將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到線段連結(jié),求線段的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,坡AB的坡度為1:2.4,坡面長(zhǎng)26米,BC⊥AC,現(xiàn)計(jì)劃在斜坡中點(diǎn)D處挖去部分坡體(用陰影表示)修建一個(gè)平行于水平線CA的平臺(tái)DE和一條新的斜坡BE(請(qǐng)將下面兩小題的結(jié)果都精確到0.1米,參考數(shù)據(jù):≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)恰為45°,則此時(shí)平臺(tái)DE的長(zhǎng)為 米;
(2)坡前有一建筑物GH,小明在D點(diǎn)測(cè)得建筑物頂部H的仰角為30°,在坡底A點(diǎn)測(cè)得建筑物頂部H的仰角為60°,點(diǎn)B、C、A、G、H在同一平面內(nèi),點(diǎn)C、A、G在同一條水平直線上,問(wèn)建筑物GH高為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點(diǎn)M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線段BC上,當(dāng)△DCM為直角三角形時(shí),折痕MN的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是由七根連桿鏈接而成的機(jī)械裝置,圖2是其示意圖.已知O,P兩點(diǎn)固定,連桿PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P兩點(diǎn)間距與OQ長(zhǎng)度相等.當(dāng)OQ繞點(diǎn)O轉(zhuǎn)動(dòng)時(shí),點(diǎn)A,B,C的位置隨之改變,點(diǎn)B恰好在線段MN上來(lái)回運(yùn)動(dòng).當(dāng)點(diǎn)B運(yùn)動(dòng)至點(diǎn)M或N時(shí),點(diǎn)A,C重合,點(diǎn)P,Q,A,B在同一直線上(如圖3).
(1)點(diǎn)P到MN的距離為_____cm.
(2)當(dāng)點(diǎn)P,O,A在同一直線上時(shí),點(diǎn)Q到MN的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)P(0,a)作直線l分別交于點(diǎn)M、N,
(1)若m=4,MN∥x軸,,求n的值;
(2)若a=5,PM=PN,點(diǎn)M的橫坐標(biāo)為3,求m-n的值;
(3)如圖,若m=4,n=-6,點(diǎn)A(d,0)為x軸的負(fù)半軸上一點(diǎn),B為x軸上點(diǎn)A右側(cè)一點(diǎn),AB=4,以AB為一邊向上作正方形ABCD,若正方形ABCD與都有交點(diǎn),求d的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:函數(shù)的圖象與軸相交于點(diǎn)兩點(diǎn),與軸相交于點(diǎn),.
(1)求拋物線的解析式且寫(xiě)出其頂點(diǎn)坐標(biāo);
(2)連結(jié),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com