【題目】如圖,在正方形中,是邊上一點(diǎn),連接,過(guò)作于,交于.
(1)如圖1,連接,當(dāng),時(shí),求的長(zhǎng);
(2)如圖2,對(duì)角線,交于點(diǎn).連接,若,求的長(zhǎng);
(3)如圖3,對(duì)角線,交于點(diǎn).連接,,若,試探索與的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)BF=5;(2);(3);理由見(jiàn)解析.
【解析】
(1)根據(jù)正方形的性質(zhì)和已知條件可證明得出△ABE≌△DAF,DF=AE=1,則可得出CF的值,再根據(jù)勾股定理即可可得答案.
(2)根據(jù)正方形ABCD對(duì)角線AC,BD相交于點(diǎn)O,即可得出∠CAB=∠ADB=45°,∠AOB=90°,又于P,∠APB=∠AOB=90°,即A,P,O,B四點(diǎn)共圓,∠OPB=∠OAB=45°,∠OPB=∠ADB ,再根據(jù)∠OBP=∠DBE,即可證明得出△OPB∽△EDB,可得,再根據(jù)DE=2AE=4,可得AD=AB=6,BD=,,,,即.
(3)連接EF,由(2)可得∠APB=∠AOB=90°,即A,P,O,B四點(diǎn)共圓,∠OPB=∠OAB=45°,∠DPE=∠OPB=45°,再根據(jù)A,P,O,B四點(diǎn)共圓有∠POA=∠PBA,則DEP=∠DAB+∠PBA=∠AOB+∠POA=∠POB,再根據(jù)∠DPE=∠OPB證明得出△DEP∽△BOP,即,再根據(jù)AF⊥BE,∠EDF=90°,得出EDF+∠EPF=180°,D,E,P,F四點(diǎn)共圓,∠DFE=∠DPE=45°,∠DEF=∠DFE=45°,DE=DF ,又AE=DF,于是AE=DE=,,,即可得出.
(1)解:∵正方形ABCD.
∴∠DAB=∠D=∠C=90°,AB=BC=DC=AD=4
∵于P.
∴∠EBA+∠FAB=90°,又∠DAF+FAB=90°.
∴∠EBA=∠DAF
又∠DAB=∠D,AB=DA.
∴△ABE≌△DAF.
∴DF=AE=1,
∴CF=DCDF=3
在Rt△BFC中,.
∴BF=5
(2)∵正方形ABCD對(duì)角線AC,BD相交于點(diǎn)O,
∴∠CAB=∠ADB=45°,∠AOB=90°
又于P. ∴∠APB=∠AOB=90°.
∴A,P,O,B四點(diǎn)共圓. ∴∠OPB=∠OAB=45°(也可由相似證得).
∴∠OPB=∠ADB
又∠OBP=∠DBE,∴△OPB∽△EDB,可得
又DE=2AE=4,可得AD=AB=6,BD=,,,
∴.
∴
(3)
理由如下:連接EF.
∵,由(2)問(wèn)可知∠APB=∠AOB=90° ,∴A,P,O,B四點(diǎn)共圓,
∴∠OPB=∠OAB=45°,∴∠DPE=∠OPB=45°,
又A,P,O,B四點(diǎn)共圓有∠POA=∠PBA
∴DEP=∠DAB+∠PBA=∠AOB+∠POA=∠POB,
又∠DPE=∠OPB,∴△DEP∽△BOP,
∴
又AF⊥BE,∠EDF=90°,∴EDF+∠EPF=180°,
∴D,E,P,F四點(diǎn)共圓
∴∠DFE=∠DPE=45°,∴∠DEF=∠DFE=45°,有DE=DF
又AE=DF,于是AE=DE=,
∴,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,0),對(duì)稱軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張老師抽取了九年級(jí)部分男生擲實(shí)心球的成績(jī)進(jìn)行整理,分成5個(gè)小組(x表示成績(jī),單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.并繪制出扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖(不完整).
(1)抽取的這部分男生有______人,請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(2)抽取的這部分男生成績(jī)的中位數(shù)落在_____組?扇形統(tǒng)計(jì)圖中D組對(duì)應(yīng)的圓心角是多少度?
(3)如果九年級(jí)有男生400人,請(qǐng)你估計(jì)他們擲實(shí)心球的成績(jī)達(dá)到合格的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市隨機(jī)選取1000位顧客,記錄了他們購(gòu)買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購(gòu)買,“×”表示未購(gòu)買.假定每位顧客購(gòu)買商品的可能性相同.
商品 顧客人數(shù) | 甲 | 乙 | 丙 | 丁 |
100 | √ | × | √ | √ |
217 | × | √ | × | √ |
200 | √ | √ | √ | × |
300 | √ | × | √ | × |
85 | √ | × | × | × |
98 | × | √ | × | × |
(1)估計(jì)顧客同時(shí)購(gòu)買乙和丙的概率為__________.
(2)如果顧客購(gòu)買了甲,并且同時(shí)也在乙、丙、丁中進(jìn)行了選購(gòu),則購(gòu)買__________(填乙、丙、。┥唐返目赡苄宰畲螅
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面內(nèi)的點(diǎn)和點(diǎn),給出如下定義:點(diǎn)為平面內(nèi)一點(diǎn),若點(diǎn)使得是以為頂角且小于90°的等腰三角形,則稱點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).如圖,點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).
在平面直角坐標(biāo)系xOy中,點(diǎn)O為坐標(biāo)原點(diǎn)
(1)已知點(diǎn),在點(diǎn),, ,中,是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn)的是 ;
(2)已知點(diǎn),點(diǎn)在直線上,若點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),求實(shí)數(shù)的取值范圍.
(3) 點(diǎn)是軸上的動(dòng)點(diǎn),,,點(diǎn)是以點(diǎn)為圓心,2為半徑的圓上一動(dòng)點(diǎn).且滿足,若直線上存在點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是⊙的直徑,是⊙的一條弦,,的延長(zhǎng)線交⊙于點(diǎn),交的延長(zhǎng)線于點(diǎn),連接,且恰好∥,連接交于點(diǎn),延長(zhǎng)交于點(diǎn),連接.
(1)求證:是⊙的切線;
(2)求證:點(diǎn)是的中點(diǎn);
(3)當(dāng)⊙的半徑為時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“圓材埋壁”是我國(guó)古代著名的數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問(wèn)題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)六寸,問(wèn)徑幾何?”用現(xiàn)代的數(shù)學(xué)語(yǔ)言表述是:“CD為的直徑,弦,垂足為E,CE=1寸,AB=10寸,求直徑CD的長(zhǎng)”,依題意得CD的長(zhǎng)為( )
A.12寸B.13寸C.24寸D.26寸
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=﹣x+c與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).
(1)求拋物線表達(dá)式;
(2)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作垂直于x軸的直線分別交x軸和直線AB于M、N兩點(diǎn),若P、M、N三點(diǎn)中恰有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,AB=AC,∠BAC=α,直線l經(jīng)過(guò)點(diǎn)A(不經(jīng)過(guò)點(diǎn)B或點(diǎn)C),點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)為點(diǎn)D,連接BD,CD.
(1)如圖1,
①求證:點(diǎn)B,C,D在以點(diǎn)A為圓心,AB為半徑的圓上;
②直接寫出∠BDC的度數(shù)(用含α的式子表示)為 ;
(2)如圖2,當(dāng)α=60°時(shí),過(guò)點(diǎn)D作BD的垂線與直線l交于點(diǎn)E,求證:AE=BD;
(3)如圖3,當(dāng)α=90°時(shí),記直線l與CD的交點(diǎn)為F,連接BF.將直線l繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中,在什么情況下線段BF的長(zhǎng)取得最大值?若AC=2a,試寫出此時(shí)BF的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com