如圖,小明想測量塔BC的高度.他在樓底A處測得塔頂B的仰角為60°;爬到樓頂D處測得大樓AD的高度為18米,同時測得塔頂B的仰角為30°,求塔BC的高度.

答案:
解析:

  解:設(shè)BE=x米.在Rt△BDE中,∵,∴.∴DE=

  ∵四邊形ACED是矩形,∴AC=DE=,CE=AD=18.在Rt△ABC中,

  ∵,∴∴x=9.

  ∴BC=BE+CE=9+18=27(米).


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,小明想測量塔BC的高度.他在樓底A處測得塔頂B的仰角為60°;爬到樓頂D處測得大樓AD的高度為18米,同時測得塔頂B的仰角為30°,求塔BC的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,小明想測量塔BC的高度.他在樓底A處測得塔頂B的仰角為60°;爬到樓頂D處測得大樓AD的高度為18米,同時測得塔頂B的仰角為30°,求塔BC的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:甘肅省中考真題 題型:解答題

如圖,小明想測量塔BC的高度,他在樓底A處測得塔頂B的仰角為60°;爬到樓頂D處測得大樓AD的高度為18米,同時測得塔頂B的仰角為30°,求塔BC的高度。

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年山東省煙臺市招遠市九年級(上)期中數(shù)學試卷(解析版) 題型:解答題

如圖,小明想測量塔BC的高度.他在樓底A處測得塔頂B的仰角為60°;爬到樓頂D處測得大樓AD的高度為18米,同時測得塔頂B的仰角為30°,求塔BC的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《解直角三角形》中考題集(35):1.5 解直角三角形的應用(解析版) 題型:解答題

如圖,小明想測量塔BC的高度.他在樓底A處測得塔頂B的仰角為60°;爬到樓頂D處測得大樓AD的高度為18米,同時測得塔頂B的仰角為30°,求塔BC的高度.

查看答案和解析>>

同步練習冊答案
鍏� 闂�