【題目】如圖1,將一副直角三角板放在同一條直線AB上,其中∠ONM=30,∠OCD=45
(1)觀察猜想
將圖1中的三角尺OCD沿AB的方向平移至圖②的位置,使得點O與點N重合,CD與MN相交于點E,則∠CEN= .
(2)操作探究
將圖1中的三角尺OCD繞點O按順時針方向旋轉(zhuǎn),使一邊OD在∠MON的內(nèi)部,如圖3,且OD恰好平分∠MON,CD與NM相交于點E,求∠CEN的度數(shù);
(3)深化拓展
將圖1中的三角尺OCD繞點O按沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,當(dāng)邊OC旋轉(zhuǎn) 時,邊CD恰好與邊MN平行。(直接寫出結(jié)果)
【答案】(1)105°;(2)150°;(3)75°或255°
【解析】
分析: (1)根據(jù)三角形的內(nèi)角和定理可得∠CEN=180°-∠DCN-∠MNO,代入數(shù)據(jù)計算即可得解;
(2)根據(jù)角平分線的定義求出∠DON=45°,利用內(nèi)錯角相等兩直線平行求出CD∥AB,再根據(jù)兩直線平行,同旁內(nèi)角互補求解即可;
(3)①分CD在AB上方時,CD∥MN,設(shè)OM與CD相交于F,根據(jù)兩直線平行,同位角相等可得∠OFD=∠M=60°,然后根據(jù)三角形的內(nèi)角和定理列式求出∠MOD,即可得解;CD在AB的下方時,CD∥MN,設(shè)直線OM與CD相交于F,根據(jù)兩直線平行,內(nèi)錯角相等可得∠DFO=∠M=60°,然后利用三角形的內(nèi)角和定理求出∠DOF,再求出旋轉(zhuǎn)角即可;②分CD在OM的右邊時,設(shè)CD與AB相交于G,根據(jù)直角三角形兩銳角互余求出∠CGN,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠CON,再求出旋轉(zhuǎn)角即可,CD在OM的左邊時,設(shè)CD與AB相交于G,根據(jù)直角三角形兩銳角互余求出∠NGD,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式求出∠AOC,然后求出旋轉(zhuǎn)角,計算即可得解.
詳解:
(1)105°;
(2)∵OD平分∠MON,
∴∠DON=∠MPN=×90°=45°,
∴∠DON=∠D=45°,
∴CD∥AB,
∴∠CEN=180°﹣∠MNO=180°﹣30°=150°;
(3)75°或255°時,邊CD恰好與邊MN平行.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC,CE為△ABC的中線,BD為AC邊上的高,BF平分∠CBD交CE于點G,連接AG交BD于點M,若∠AFG=63°,則∠AMB的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中, 為對角線, 的交點,經(jīng)過點和點作⊙,分別交, 于點, .已知正方形邊長為,⊙的半徑為,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,△ABC 的頂點均在格點上,請在所給直角坐標(biāo)系中按要求畫圖和解答下列問題:
(1)以A點為旋轉(zhuǎn)中心,將△ABC繞點A順時針旋轉(zhuǎn)90°得△AB1C1,畫出△AB1C1.
(2)作出△ABC關(guān)于坐標(biāo)原點O成中心對稱的△A2B2C2.
(3)作出點C關(guān)于x軸的對稱點P. 若點P向右平移x個單位長度后落在△A2B2C2的內(nèi)部(不含落在△A2B2C2的邊上),請直接寫出x的取值范圍..
(提醒:每個小正方形邊長為1個單位長度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于點A(1,0),B(3,0),且過點C(0,-3).
(1)求拋物線的解析式和頂點坐標(biāo);
(2)請你寫出一種平移的方法,使平移后拋物線的頂點落在直線y=-x上,并寫出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里裝著除顏色外完全相同的黑、白兩種小球共40個,小明做摸球?qū)嶒,他將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù)m | 70 | 128 | 171 | 302 | 481 | 599 | 903 |
摸到白球的頻率 | 0.75 | 0.64 | 0.57 | 0.604 | 0.601 | 0.599 | 0.602 |
(1)請估計:當(dāng)n很大時,摸到白球的概率約為 .(精確到0.1)
(2)估算盒子里有白球 個.
(3)若向盒子里再放入x個除顏色以外其它完全相同的球,這x個球中白球只有1個,每次將球攪拌均勻后,任意摸出一個球記下顏色再放回,通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到白球的頻率穩(wěn)定在50%,那么可以推測出x最有可能是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,連接DH,求證:(1)EH=FH;
(2)∠CAB=2∠CDH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點,兩點關(guān)于原點對稱,將點向左平移3個單位到達點,設(shè)點,且.
(1)求實數(shù)的值;
(2)畫出以點為頂點的四邊形,并求出這個四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣,為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學(xué)生參加的“漢字聽寫大賽”為了解本次大賽的成績,校團委隨機抽取了其中若干名學(xué)生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
成績分 | 頻數(shù)人 | 頻率 |
10 | ||
| 30 | |
| 40 | n |
| m | |
| 50 | |
a | 1 |
請根據(jù)所給信息,解答下列問題:
______,______,______;
補全頻數(shù)直方圖;
這若干名學(xué)生成績的中位數(shù)會落在______分?jǐn)?shù)段;
若成績在90分以上包括90分的為“優(yōu)”等,請你估計該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com