【題目】(1)先化簡(jiǎn),再求值:(a-b)2+b(3a-b)-a2,其中a=2,b=6;
(2) 已知2a2+3a-6=0,求代數(shù)式3a(2a+1)-(2a+1)(2a-1)的值.
【答案】(1)化簡(jiǎn)結(jié)果是;當(dāng)a=2,b=6時(shí),原式=12;(2)7.
【解析】
(1)原式利用完全平方公式,以及單項(xiàng)式乘以多項(xiàng)式法則計(jì)算,合并同類項(xiàng)得到最簡(jiǎn)結(jié)果,把a=2,b=6代入計(jì)算即可求出值;
(2)原式利用單項(xiàng)式乘以多項(xiàng)式,平方差公式計(jì)算,合并同類項(xiàng)得到最簡(jiǎn)結(jié)果,將已知等式2a2+3a-6=0變形為2a2+3a=6后整體代入計(jì)算即可求出值.
解:(1)原式=
=,
當(dāng)a=2,b=6時(shí),原式= =12;
(2)原式=6a2+3a-4a2+1=2a2+3a+1,
由2a2+3a-6=0,得到2a2+3a=6,
則原式=6+1=7.
故答案是:(1)化簡(jiǎn)結(jié)果是;當(dāng)a=2,b=6時(shí),原式=12;(2)7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),
①寫出圖中一對(duì)全等的三角形,并寫出它們的所有對(duì)應(yīng)角;
②設(shè)的度數(shù)為x,∠的度數(shù)為,那么∠1,∠2的度數(shù)分別是多少?(用含有x或y的代數(shù)式表示)
③∠A與∠1、∠2之間有一種數(shù)量關(guān)系始終保持不變,請(qǐng)找出這個(gè)規(guī)律.
(2)如圖2,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE外部時(shí),∠A與∠1、∠2的數(shù)量關(guān)系是否發(fā)生變化?如果發(fā)生變化,求出∠A與∠1、∠2的數(shù)量關(guān)系;如果不發(fā)生變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)環(huán)境和提高果樹產(chǎn)量,某果農(nóng)計(jì)劃從甲、乙兩個(gè)倉庫用汽車向A、B兩個(gè)果園運(yùn)送有機(jī)化肥,甲、乙兩個(gè)倉庫分別可運(yùn)出80噸和100噸有機(jī)化肥,A、B兩個(gè)果園分別需要110噸和70噸有機(jī)化肥.甲倉庫到A、B兩個(gè)果園的路程分別為15千米和25千米,乙倉庫到A、B兩個(gè)果園的路程都是20千米.設(shè)甲倉庫運(yùn)往A果園x噸有機(jī)化肥,解答下列問題:
(1)甲倉庫運(yùn)往B果園 噸有機(jī)化肥,乙倉庫運(yùn)往B果園 噸有機(jī)化肥;
(2)若汽車每噸每千米的運(yùn)費(fèi)為2元,設(shè)總運(yùn)費(fèi)為y元,求y關(guān)于x的函數(shù)表達(dá)式,并求當(dāng)甲倉庫運(yùn)往A果園多少噸有機(jī)化肥時(shí),總運(yùn)費(fèi)最?此時(shí)的總運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)分別為和的兩個(gè)正方形和并排放在一起,連結(jié)并延長(zhǎng)交于點(diǎn),交于點(diǎn),則
A. B. 2 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,以AC為邊向外作△ACD,F為BC上一點(diǎn),連結(jié)AF.
(1)如圖1,若∠ACD=90°,∠CAD=30°,CD=1,AB=BF=2,求FC的長(zhǎng)度.
(2)如圖2,若AB=AC,延長(zhǎng)DC交AF延長(zhǎng)線于H點(diǎn),且∠AHD=90°,∠BCH=∠CAD,連結(jié)BD交AF于M點(diǎn),求證:CD=2MH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①,在四邊形中,,,于點(diǎn).若,求四邊形的面積.
應(yīng)用:如圖②,在四邊形中,,,于點(diǎn).若,,,則四邊形的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們將如圖所示的兩種排列形式的點(diǎn)的個(gè)數(shù)分別稱作“三角形數(shù)”(如1,3,6,10……) 和“正方形數(shù)”(如1,4,9,16……),在小于200的數(shù)中,設(shè)最大的“三角形數(shù)”為t,最大的“正方形數(shù)”為m,則t+m的值為( 。
A.33B.301C.386D.571
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為AB、BC上的點(diǎn),且AE=BF,連結(jié)DE、AF,猜想DE、AF的關(guān)系并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com