【題目】下列4×4的正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網(wǎng)格圖形是( )
A. B. C. D.
【答案】B
【解析】試題分析:根據(jù)勾股定理求出△ABC的三邊,并求出三邊之比,然后根據(jù)網(wǎng)格結構利用勾股定理求出三角形的三邊之比,再根據(jù)三邊對應成比例,兩三角形相似選擇答案.
解:根據(jù)勾股定理,AB==2,
BC==,
AC==,
所以△ABC的三邊之比為:2:=1:2:,
A、三角形的三邊分別為2,=,=3,三邊之比為2::3=::3,故A選項錯誤;
B、三角形的三邊分別為2,4,=2,三邊之比為2:4:2=1:2:,故B選項正確;
C、三角形的三邊分別為2,3,=,三邊之比為2:3:,故C選項錯誤;
D、三角形的三邊分別為=,=,4,三邊之比為::4,故D選項錯誤.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個三棱柱包裝盒,它的底面是邊長為10cm的正三角形,三個側面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個三棱柱包裝盒的側面進行包貼(要求包貼時沒有重疊部分),紙帶在側面纏繞三圈,正好將這個三棱柱包裝盒的側面全部包貼滿.在圖3中,將三棱柱沿過點A的側棱剪開,得到如圖4的側面展開圖.為了得到裁剪的角度,我們可以根據(jù)展開圖拼接出符合條件的平行四邊形進行研究.
(1)請在圖4中畫出拼接后符合條件的平行四邊形;
(2)請在圖2中,計算裁剪的角度(即∠ABM的度數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,請分別根據(jù)已知條件進行推理,得出結論,并在括號內(nèi)注明理由.
①∵ ∠B=∠3(已知),∴______∥______.(______,______)
②∵∠1=∠D (已知),∴______∥______.(______,______)
③∵∠2=∠A (已知),∴______∥______.(______,______)
④∵∠B+∠BCE=180° (已知),∴______∥______.(______,______)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】截至2016年底,國家開發(fā)銀行對“一代一路”沿線國家累計貸款超過1600億美元,其中1600億用科學記數(shù)法表示為( )
A.16×1010
B.1.6×1010
C.1.6×1011
D.0.16×1012
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①相等的角是對頂角;②同位角相等;③過一點有且只有一條直線與已知直線平行;④直線外一點到這條直線的垂線段的長度,叫做點到直線的距離;其中正確的有( )個.
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在求1+6+62+63+64+65+66+67+68+69的值時,小林發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的6倍,于是她設:
S=1+6+62+63+64+65+66+67+68+69①
然后在①式的兩邊都乘以6,得:
6S=6+62+63+64+65+66+67+68+69+610②
②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,愛動腦筋的小林想:
如果把“6”換成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是( 。
A. B. C. D. a2014﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(﹣2,5),并且與y軸交于點P,直線y= x+3與y軸交于點Q,點Q恰與點P關于x軸對稱,求這個一次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com