如圖,若Rt△ABC,∠C=90°,CD為斜邊上的高,AC=m,AB=n,則△ACD的面積與△BCD的面積比數(shù)學(xué)公式的值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:先根據(jù)題意判斷出Rt△ADC∽Rt△ABC,利用對應(yīng)線段成比例求得線段AD的長,然后再得到△ACD∽△BCD,根據(jù)相似三角形的面積比等于相似比的平方進行解答即可.
解答:∵CD⊥AD于點D,∠C=90°,
∴∠ACD=∠ABC,
∴△ACD∽ABC,

即:AD==
∴在直角三角形ADC中,由勾股定理得:CD2=AC2-AD2=m2-
∵∠B=∠ACD
∴△ACD∽△BCD,
=(2===,
故選C.
點評:本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是兩次證得直角三角形相似并利用相似三角形面積的比等于相似比的平方求得兩三角形面積的比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•黔東南州)如圖,若Rt△ABC,∠C=90°,CD為斜邊上的高,AC=m,AB=n,則△ACD的面積與△BCD的面積比
S△BCD
S△ACD
的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的判定選擇題(帶解析) 題型:單選題

如圖,若Rt△ABC,∠C=90°,CD為斜邊上的高,AC=m,AB=n,則△ACD的面積與△BCD的面積比的值是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的判定選擇題(解析版) 題型:選擇題

如圖,若Rt△ABC,∠C=90°,CD為斜邊上的高,AC=m,AB=n,則△ACD的面積與△BCD的面積比的值是(  )

A.              B.           C.          D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年四川省瀘州市瀘縣九中中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

如圖,若Rt△ABC,∠C=90°,CD為斜邊上的高,AC=m,AB=n,則△ACD的面積與△BCD的面積比的值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年貴州省黔東南州中考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,若Rt△ABC,∠C=90°,CD為斜邊上的高,AC=m,AB=n,則△ACD的面積與△BCD的面積比的值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案