【題目】在距離大足城區(qū)的1.5公里的北山之上,有一處密如峰房的石窟造像點(diǎn),今被稱為北山石窟.北山石窟造像在兩宋時(shí)期達(dá)到鼎盛,逐漸都成了以北山佛灣為中心,環(huán)繞營(yíng)盤坡、佛耳巖,觀音坡、多寶塔等多處造像點(diǎn)的大型石窟群.多寶塔,也稱為白塔”“北塔,于巖石之上,為八角形閣式磚塔,外觀可辨十二級(jí),其內(nèi)有八層樓閣,可沿著塔心內(nèi)的梯道逐級(jí)而上,元且期間,小華和媽媽到大足北山游玩,小華站在坡度為l12的山坡上的B點(diǎn)觀看風(fēng)景,恰好看到對(duì)面的多寶培,測(cè)得眼睛A看到塔頂C的仰角為30°,接著小華又向下走了10米,剛好到達(dá)坡底E,這時(shí)看到塔頂C的仰角為45°,若AB1.5米,則多寶塔的高度CD約為( 。ň_到0.1米,參考數(shù)據(jù)≈1.732

A. 51.0B. 52.5C. 27.3D. 28.8

【答案】B

【解析】

如圖,設(shè)CDx米.延長(zhǎng)ABDEH,作AMCDM,ANCDN.想辦法構(gòu)建方程求出x即可.

解:如圖,設(shè)CDx米.延長(zhǎng)ABDEH,作AMCDMANCDN

RtBHE中,∵BE10米,BHEH12

BH10(米),EH20(米),

∵四邊形AHDM是矩形,四邊形AEDN是矩形,

AMDH,AHDMANDE,AEDN1.5(米),

RtCAN中,∵∠CAN45°,

CNANDE=(x1.5)(米),

AMDH=(20+x1.5)(米),CM=(x5)(米),

RtACM中,∵∠CAM30°,

AMCM,

20+x1.5x11.5),

x≈52.5,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)yax2+bxybx+a的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)M,N的坐標(biāo)分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個(gè)不同的交點(diǎn),則a的取值范圍是( 。

A. a≤﹣1≤a< B. ≤a<

C. a≤a> D. a≤﹣1a≥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)M在直線L上.

求直線L的函數(shù)表達(dá)式;

現(xiàn)將拋物線沿該直線L方向進(jìn)行平移,平移后的拋物線的頂點(diǎn)為N,與x軸的右交點(diǎn)為C,連接NC,當(dāng)時(shí),求平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB與⊙O相切于點(diǎn)C,OA,OB分別交⊙O于點(diǎn)D,E,CD=CE.

(1)求證:OA=OB

(2)已知AB=4,OA=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于世界人口增長(zhǎng)、水污染以及水資源浪費(fèi)等原因,全世界面臨著淡水資源不足的問題,我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,人均占水量?jī)H為2400m3左右,我國(guó)已被聯(lián)合國(guó)列為13個(gè)貧水國(guó)家之一,合理利用水資源是人類可持續(xù)發(fā)展的當(dāng)務(wù)之急,而節(jié)約用水是水資源合理利用的關(guān)鍵所在,是最快捷、最有效、最可行的維護(hù)水資源可持續(xù)利用的途徑之一,為了調(diào)查居民的用水情況,有關(guān)部門對(duì)某小區(qū)的20戶居民的月用水量進(jìn)行了調(diào)查,數(shù)據(jù)如下:(單位:t

6.7

8.7

7.3

11.4

7.0

6.9

11.7

9.7

10.0

9.7

7.3

8.4

10.6

8.7

7.2

8.7

10.5

9.3

8.4

8.7

整理數(shù)據(jù) 按如下分段整理樣本數(shù)據(jù)并補(bǔ)至表格:(表1

用水量xt

6.0≤x7.5

7.5≤x9.0

9.0≤x10.5

10.5≤x12

人數(shù)

a

6

b

4

分析數(shù)據(jù),補(bǔ)全下列表格中的統(tǒng)計(jì)量;(表2

平均數(shù)

中位數(shù)

眾數(shù)

8.85

c

d

得出結(jié)論:

1)表中的a   ,b   ,c   ,d   

2)若用表1中的數(shù)據(jù)制作一個(gè)扇形統(tǒng)計(jì)圖,則9.0≤x10.5所示的扇形圓心角的度數(shù)為   度.

3)如果該小區(qū)有住戶400戶,請(qǐng)根據(jù)樣本估計(jì)用水量在6.0≤x9.0的居民有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)在一次用頻率去估計(jì)概率的實(shí)驗(yàn)中,繪出了某一結(jié)果出現(xiàn)的頻率的折線圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是

A. 擲一枚正六面體的骰子,出現(xiàn)1點(diǎn)的概率

B. 拋一枚硬幣,出現(xiàn)正面的概率

C. 任意寫一個(gè)整數(shù),它能被2整除的概率

D. 從一個(gè)裝有2個(gè)白球和1個(gè)紅球的袋子中任取一球,取到紅球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣,0),點(diǎn)B(0,1)把△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得△A'B'O,點(diǎn)A,B旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A',B',記旋轉(zhuǎn)角為α(0°<α<360°).

(1)如圖①,當(dāng)點(diǎn)A′,B,B′共線時(shí),求AA′的長(zhǎng).

(2)如圖②,當(dāng)α=90°,求直線ABAB′的交點(diǎn)C的坐標(biāo);

(3)當(dāng)點(diǎn)A′在直線AB上時(shí),求BB′與OA′的交點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),交軸于點(diǎn),直線過點(diǎn)軸交于點(diǎn),與拋物線的另一個(gè)交點(diǎn)為,作軸于點(diǎn).設(shè)點(diǎn)是直線上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)、重合),過點(diǎn)軸的平行線,交直線于點(diǎn),作于點(diǎn).

1)填空:__________,__________,__________

2)探究:是否存在這樣的點(diǎn),使四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;

3)設(shè)的周長(zhǎng)為,點(diǎn)的橫坐標(biāo)為,求的函數(shù)關(guān)系式,并求出的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案