【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.
【答案】(1)見解析;(2)2.
【解析】
(1)根據(jù)菱形的判定證明即可;
(2)根據(jù)等邊三角形的性質(zhì)菱形的性質(zhì)和三角函數(shù)解答即可.
(1)證明:∵E為AD的中點(diǎn),
∴AD=2DE=2AE,
∵AD=2BC,
∴DE=BC,
又∵AD∥BC,
∴四邊形BCDE為平行四邊形,
∵∠ABD=90°,E為AD中點(diǎn),
∴在Rt△ABD中,AD=2BE,
∴BE=DE,
∴四邊形BCDE為菱形;
(2)解:過點(diǎn)BF⊥AD于點(diǎn)F,如圖所示:
∵AC平分∠BAD,
∴∠BAC=∠DAC,
又∵AD∥BC,
∴∠BCA=∠DAC,
∴∠BCA=∠BAC,
∴AB=BC,
∴AB=BC=BE=DE=AE=2,
∴△ABE為等邊三角形,
∴∠BAE=60°,∠BDA=30°
∴在Rt△ABD中,BD=AB=2
∴在Rt△BDF中,BF=BD=,
∴菱形BCDE的面積=DE×BF=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖①,直線AB∥CD,E是AB與CD之間的一點(diǎn),連接BE,CE,可以發(fā)現(xiàn)∠B+∠C=∠BEC.
請(qǐng)把下面的證明過程補(bǔ)充完整:
證明:過點(diǎn)E作EF∥AB,
∵AB∥DC(已知),EF∥AB(輔助線的作法),
∴EF∥DC( )
∴∠C=∠CEF.( )
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C= (等式性質(zhì))
即∠B+∠C=∠BEC.
(2)拓展探究:如果點(diǎn)E運(yùn)動(dòng)到圖②所示的位置,其他條件不變,求證:∠B+∠C=360°﹣∠BEC.
(3)解決問題:如圖③,AB∥DC,試寫出∠A、∠C、∠AEC的數(shù)量關(guān)系 .(直接寫出結(jié)論,不用寫計(jì)算過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長線于點(diǎn)E,BC=6, .求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,連接BD,點(diǎn)E在BC上,點(diǎn)F在DC上,連接EF,且∠1=∠2.
(1)求證:EF∥BD;
(2)若BD平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,過點(diǎn)B的直線與對(duì)角線AC、邊AD分別交于點(diǎn)E和F.過點(diǎn)E作EG∥BC,交AB于G,則圖中相似三角形有( )
A.4對(duì) B.5對(duì) C.6對(duì) D.7對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且∠EDB=∠C.
(1)求證:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若自然數(shù)使得三個(gè)數(shù)的加法運(yùn)算“”產(chǎn)生進(jìn)位現(xiàn)象,則稱為“連加進(jìn)位數(shù)”.例如:2不是“連加進(jìn)位數(shù)”,因?yàn)?/span>不產(chǎn)生進(jìn)位現(xiàn)象;4是“連加進(jìn)位數(shù)”,因?yàn)?/span>產(chǎn)生進(jìn)位現(xiàn)象;51是“連加進(jìn)位數(shù)”,因?yàn)?/span>產(chǎn)生進(jìn)位現(xiàn)象.如果從0,1,2,…,99這100個(gè)自然數(shù)中任取一個(gè)數(shù),取到“連加進(jìn)位數(shù)”的個(gè)數(shù)有( )個(gè)
A.88B.89C.90D.91
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的頂點(diǎn)坐標(biāo)為,并且與軸交于點(diǎn),與軸交于、兩點(diǎn).
()求拋物線的表達(dá)式.
()如圖,設(shè)拋物線的對(duì)稱軸與直線交于點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn),過點(diǎn)作軸的平行線,與拋物線交于點(diǎn),問是否存在點(diǎn),使得以、、為頂點(diǎn)的三角形與相似.若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com