【題目】小軍想用鏡子測量一棵古松樹的高度,但因樹旁有一條小河,不能測量鏡子與樹之間的距離.于是他利用鏡子進(jìn)行兩次測量.如圖,第一次他把鏡子放在點C處,人在點F處正好在鏡中看到樹尖A;第二次他把鏡子放在點處,人在點F處正好在鏡中看到樹尖A.已知小軍的眼睛距地面1.7m,量得m, m, m.求這棵古松樹的高度.

【答案】這棵古松樹的高度為10m.

【解析】

由題意知:∠ACB=ECF,∠AC'B=E'CF',則△BAC~FEC,△AC'B~E'C'F',再根據(jù)相似三角形的性質(zhì)即可解答.

設(shè)這棵古松樹的高度m, m.

,,

,

,

,

,,

,

,

,

,

,即,解得,

m.

.

解得,即m.

答:這棵古松樹的高度為10m.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一種品牌羽絨服和防寒服,其中羽絨服的售價是防寒服售價的5倍還多100元,20141月份(春節(jié)前期)共銷售500件,羽絨服與防寒服銷量之比是41,銷售總收入為58.6萬元.

1)求羽絨服和防寒服的售價;

2)春節(jié)后銷售進(jìn)入淡季,20142月份羽絨服銷量下滑了6m%,售價下滑了4m%,防寒服銷量和售價都維持不變,結(jié)果銷售總收入下降為16.04萬元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種文具,進(jìn)價為5元/件.售價為6元/件時,當(dāng)天的銷售量為100件.在銷售過程中發(fā)現(xiàn):售價每上漲0.5元,當(dāng)天的銷售量就減少5件.設(shè)當(dāng)天銷售單價統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當(dāng)天銷售利潤為元.

1)求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

2)要使當(dāng)天銷售利潤不低于240元,求當(dāng)天銷售單價所在的范圍;

3)若每件文具的利潤不超過,要想當(dāng)天獲得利潤最大,每件文具售價為多少元?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形ABCD中,AB=8BE=DF=1,M是射線AD上的動點,點A關(guān)于直線EM的對稱點為A′,當(dāng)△AFC為以FC為直角邊的直角三角形時,對應(yīng)的MA的長為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個一元二次方程:M:N:,其中,以下列四個結(jié)論中,錯誤的是( )

A、如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根;

B、如果方程M有兩根符號相同,那么方程N的兩根符號也相同;

C、如果5是方程M的一個根,那么是方程N的一個根;

D、如果方程M和方程N有一個相同的根,那么這個根必是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請僅用無刻度的直尺分別按下列要求畫圖(保留畫圖痕跡).

1)如圖1,拋物線lx軸交于A,B兩點,與y軸交于點C,CDx軸交拋物線于點D,作出拋物線的對稱軸EF;

2)如圖2,拋物線l1,l2交于點P且關(guān)于直線MN對稱,兩拋物線分別交x軸于點AB和點C,D,作出直線MN .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yaxh2+ka0)的圖象是拋物線,定義一種變換,先作這條拋物線關(guān)于原點對稱的拋物線y′,再將得到的對稱拋物線y′向上平移mm0)個單位,得到新的拋物線ym,我們稱ym叫做二次函數(shù)yaxh2+ka0)的m階變換.

1)已知:二次函數(shù)y2x+22+1,它的頂點關(guān)于原點的對稱點為   ,這個拋物線的2階變換的表達(dá)式為   

2)若二次函數(shù)M6階變換的關(guān)系式為y6′=(x12+5

二次函數(shù)M的函數(shù)表達(dá)式為   

若二次函數(shù)M的頂點為點A,與x軸相交的兩個交點中左側(cè)交點為點B,在拋物線y6′=(x12+5上是否存在點P,使點P與直線AB的距離最短,若存在,求出此時點P的坐標(biāo).

3)拋物線y=﹣3x26x+1的頂點為點A,與y軸交于點B,該拋物線的m階變換的頂點為點C.若△ABC是以AB為腰的等腰三角形,請直按寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“用三角板畫圓的切線”的畫圖過程

如圖1,已知圓上一點A,畫過A點的圓的切線.

畫法:(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經(jīng)過點A,另一條直角邊與圓交于B點,連接AB;

(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經(jīng)過點B,畫出另一條直角邊所在的直線AD.

所以直線AD就是過點A的圓的切線.

請回答:該畫圖的依據(jù)是_______________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,根據(jù)圖象回答下列問題:

1)點B的坐標(biāo)為 ;

2yx的增大而減小的自變量x的取值范圍為 ;

3)方程ax2+bx+c=0的兩個根為 ;

4)不等式ax2+bx+c0的解集為 .

查看答案和解析>>

同步練習(xí)冊答案