【題目】已知:∠AOB140°,OC,OM,ON是∠AOB內(nèi)的射線.

1)如圖1所示,若OM平分∠BOC,ON平分∠AOC,求∠MON的度數(shù):

2)如圖2所示,OD也是∠AOB內(nèi)的射線,∠COD15°,ON平分∠AODOM平分∠BOC.當(dāng)∠COD繞點(diǎn)O在∠AOB內(nèi)旋轉(zhuǎn)時(shí),∠MON的位置也會(huì)變化但大小保持不變,請(qǐng)求出∠MON的大;

3)在(2)的條件下,以∠AOC20°為起始位置(如圖3),當(dāng)∠COD在∠AOB內(nèi)繞點(diǎn)O以每秒的速度逆時(shí)針旋轉(zhuǎn)t秒,若∠AON:∠BOM1912,求t的值.

【答案】(1)∠MON的度數(shù)為70°.(2)∠MON的度數(shù)為62.5°.(3t的值為20

【解析】

(1)根據(jù)角平分線的性質(zhì)以及角的和差倍關(guān)系轉(zhuǎn)化求出角的度數(shù);

2)根據(jù)角平分線的性質(zhì)可以求得:∠MON(∠AOB+COD)﹣∠COD,代入數(shù)據(jù)即可求得;

3)由題意得∠AON20°+3t+15°),∠BOM140°20°3t),由此列出方程即可求解.

1)∵ON平分∠AOC,OM平分∠BOC

∴∠CONAOC,∠COMBOC

MON=∠CON+COM

(∠AOC+BOC

AOB

又∠AOB140°

∴∠MON70°

答:∠MON的度數(shù)為70°

2)∵OM平分∠BOC,ON平分∠AOD,

∴∠COMBOC,∠DONAOD

即∠MON=∠COM+DON﹣∠COD

BOC+AOD﹣∠COD

(∠BOC+AOD)﹣∠COD

(∠BOC+AOC+COD)﹣∠COD

(∠AOB+COD)﹣∠COD

140°+15°)﹣15°

62.5°

答:∠MON的度數(shù)為62.5°

3)∠AON20°+3t+15°),

BOM140°20°3t

又∠AON:∠BOM1912,

1235°+3t)=19120°3t

t20

答:t的值為20

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上點(diǎn)A表示的數(shù)為10,點(diǎn)M,N分別以每秒a個(gè)單位長(zhǎng)度,每秒b個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸運(yùn)動(dòng),a, b滿足|a-5|+(b-6)2=0.

(1)請(qǐng)真接與出a= , b= ;

(2)如圖1,點(diǎn)MA出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),到達(dá)原點(diǎn)后立即返回向右運(yùn)動(dòng):同時(shí)點(diǎn)N從原點(diǎn)0出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t,點(diǎn)P為線段ON的中點(diǎn)若MP=MA,t的值:

(3)如圖2,若點(diǎn)M從原點(diǎn)向右運(yùn)動(dòng),同時(shí)點(diǎn)N從原點(diǎn)向左運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t時(shí)M運(yùn)動(dòng)到點(diǎn)A的右側(cè),若此時(shí)以MN, O, A為端點(diǎn)的所有線段的長(zhǎng)度和為142,求此時(shí)點(diǎn)M對(duì)應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:

如圖,若點(diǎn)B把線段分成兩條長(zhǎng)度相等的線段ABBC,則點(diǎn)B叫做線段AC的中點(diǎn).

回答問(wèn)題:

(1)如圖,在數(shù)軸上,點(diǎn)A所表示的數(shù)是﹣2,點(diǎn)B所表示的數(shù)是0,點(diǎn)C所表示的數(shù)是3.

A是線段DB的中點(diǎn),則點(diǎn)D表示的數(shù)是   ;

E是線段AC的中點(diǎn),求點(diǎn)E表示的數(shù).

(2)在數(shù)軸上,若點(diǎn)M表示的數(shù)是m,點(diǎn)N所表示的數(shù)是n,點(diǎn)P是線段MN的中點(diǎn).

若點(diǎn)P表示的數(shù)是1,則m、n可能的值是   (填寫符合要求的序號(hào));

im=0,n=2;(iim=﹣5,n=7;(iiim=0.5,n=1.5;(ivm=﹣1,n=2

直接用含m、n的代數(shù)式表示點(diǎn)P表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹(shù)上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點(diǎn)B處,風(fēng)箏掛在建筑物上方的樹(shù)枝點(diǎn)G處(點(diǎn)G在FE的延長(zhǎng)線上).經(jīng)測(cè)量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點(diǎn)G與建筑物頂點(diǎn)D及風(fēng)箏線在手中的點(diǎn)A在同一條直線上,點(diǎn)A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.

(1)求風(fēng)箏距地面的高度GF;

(2)在建筑物后面有長(zhǎng)5米的梯子MN,梯腳M在距墻3米處固定擺放,通過(guò)計(jì)算說(shuō)明:若兵兵充分利用梯子和一根米長(zhǎng)的竹竿能否觸到掛在樹(shù)上的風(fēng)箏?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠谷商場(chǎng)“家電下鄉(xiāng)”指定型號(hào)冰箱、彩電的進(jìn)價(jià)和售價(jià)如下表所示:

(1)按國(guó)家政策,農(nóng)民購(gòu)買“家電下鄉(xiāng)”產(chǎn)品可享受售價(jià)13%的政府補(bǔ)貼.農(nóng)民田大伯到該商場(chǎng)購(gòu)買了冰箱、彩電各一臺(tái),可以享受多少元的政府補(bǔ)貼?

(2)為滿足農(nóng)民需求,商場(chǎng)決定用不超過(guò)85000元采購(gòu)冰箱、彩電共40臺(tái),且冰箱的數(shù)量不少于彩電數(shù)量的

①請(qǐng)你幫助該商場(chǎng)設(shè)計(jì)相應(yīng)的進(jìn)貨方案;

②哪種進(jìn)貨方案商場(chǎng)獲得利潤(rùn)最大(利潤(rùn)=售價(jià)-進(jìn)價(jià)),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長(zhǎng)為4,邊OA,OC分別在x軸,y軸的正半軸上,把正方形OABC的內(nèi)部及邊上,橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為好點(diǎn).點(diǎn)P為拋物線的頂點(diǎn).

1)當(dāng)時(shí),求該拋物線下方(包括邊界)的好點(diǎn)個(gè)數(shù).

2)當(dāng)時(shí),求該拋物線上的好點(diǎn)坐標(biāo).

3)若點(diǎn)P在正方形OABC內(nèi)部,該拋物線下方(包括邊界)恰好存在8個(gè)好點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)、兩點(diǎn).

求拋物線的解析式;

如圖,點(diǎn)是直線上方拋物線上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),請(qǐng)求出點(diǎn)的坐標(biāo)和面積的最大值?

的結(jié)論下,過(guò)點(diǎn)軸的平行線交直線于點(diǎn),連接,點(diǎn)是拋物線對(duì)稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn),使得以、、為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寓言故事《烏鴉喝水》教導(dǎo)我們遇到困難要運(yùn)用智慧、認(rèn)真思考才能讓問(wèn)題迎刃而解.如圖,一個(gè)緊口瓶中盛有一些水,可烏鴉的嘴夠不到瓶中的水.于是烏鴉銜來(lái)一些小石子放入瓶中,瓶中的水面高度得到提升.由于放入的石子較多,水都快溢出來(lái)了,烏鴉成功喝到了水,如果銜入瓶中石子的體積為,水面高度為,下面圖象能大致表示該故事情節(jié)的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)E、FAD上的點(diǎn),且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點(diǎn)G、H

1)求EGBG的值;

2)求證:AG=OG;

3)設(shè)AG=aGH=b,HO=c,求abc的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案