【題目】如圖,在△ABC中,ABAC,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),點(diǎn)FBC邊上,連接DE、DFEF,則添加下列哪一個(gè)條件后,仍無法判斷△FCE△EDF全等( )

A. ∠A=∠DFE B. BF=CF C. DF∥AC D. ∠C=∠EDF

【答案】A

【解析】試題解析:A、∠A∠CFE沒關(guān)系,故A錯(cuò)誤;

B、BF=CF,FBC中點(diǎn),點(diǎn)D、E分別是邊ABAC的中點(diǎn),

∴DF∥AC,DE∥BC,

∴∠CEF=∠DFE,∠CFE=∠DEF

△CEF△DFE

,

∴△CEF≌△DFE ASA),故B正確;

C、點(diǎn)D、E分別是邊AB、AC的中點(diǎn),

∴DE∥BC,

∴∠CFE=∠DEF,

∵DF∥AC,

∴∠CEF=∠DFE

△CEF△DFE

,

∴△CEF≌△DFE ASA),故C正確;

D、點(diǎn)D、E分別是邊AB、AC的中點(diǎn),

∴DE∥BC,

∴∠CFE=∠DEF,

∴△CEF≌△DFE AAS),故D正確;

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2與x軸交于點(diǎn)A(1,0)和B(4,0).

(1)求拋物線的解析式;
(2)若拋物線的對稱軸交x軸于點(diǎn)E,點(diǎn)F是位于x軸上方對稱軸上一點(diǎn),F(xiàn)C∥x軸,與對稱軸右側(cè)的拋物線交于點(diǎn)C,且四邊形OECF是平行四邊形,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,拋物線的對稱軸上是否存在點(diǎn)P,使△OCP是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分線,求∠A和∠CDB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線x軸交于點(diǎn)A,與y軸交于點(diǎn)B,現(xiàn)將沿直線AB翻折得到,以點(diǎn)A、B、C為頂點(diǎn)作平行四邊形,第四個(gè)頂點(diǎn)D的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E是AD上的點(diǎn),點(diǎn)F是BC的延長線上一點(diǎn),CF=DE,連結(jié)BE和EF,EF與CD交于點(diǎn)G,且∠FBE=∠FEB.

(1)過點(diǎn)F作FH⊥BE于點(diǎn)H,證明: = ;
(2)猜想:BE、AE、EF之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若DG=2,求AE值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,有一個(gè)只允許單向通過的窄道口,通常情況下,每分鐘可以通過9人.一天王老師到達(dá)道口時(shí),發(fā)現(xiàn)由于擁擠,每分鐘只能有3人通過道口,此時(shí),自己前面還有36人等待通過(假定先到達(dá)的先過,王老師過道口的時(shí)間忽略不計(jì)),通過道口后,還需7分鐘到達(dá)學(xué)校.

1)此時(shí),若繞道而行,要15分鐘才能到達(dá)學(xué)校,從節(jié)省時(shí)間考慮,王老師應(yīng)選擇繞道去學(xué)校,還是選擇通過擁擠的道口去學(xué)校?

2)若在王老師等人的維持下,幾分鐘后秩序恢復(fù)正常(維持秩序期間,每分鐘仍有3人通過道口),結(jié)果王老師比在擁擠的情況下提前6分鐘通過道口,問維持秩序的時(shí)間是多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的5個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出“進(jìn)取”所對應(yīng)的圓心角的度數(shù).
(3)如果要在這5個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),連接EF,則△AEF的面積是(
A.4
B.3
C.2
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,一個(gè)直角三角板XYZ放置在△ABC上,恰好三角板XYZ的兩條直角邊XY,XZ分別經(jīng)過點(diǎn)B,C,△ABC中,若∠A=30°,則∠ABC+∠ACB=__ __,∠XBC+∠XCB=__ __;

(2)若改變直角三角板XYZ的位置,但三角板XYZ的兩條直角邊XY,XZ仍然分別經(jīng)過點(diǎn)B,C,那么∠ABX+∠ACX的大小是否變化?若變化,請說明理由;若不變化,請求出∠ABX+∠ACX的大。

查看答案和解析>>

同步練習(xí)冊答案