請閱讀下面材料:已知點A、B在數(shù)軸上分別表示有理數(shù)ab,AB兩點之間的距離表示為|AB|.當(dāng)A、B兩點中有一點在原點時,不妨設(shè)點A在原點,如圖1,|AB|=|OB|=|b|=|a-b|;當(dāng)A、B兩點都不在原點時,①如圖2,點AB都在原點右邊,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如圖3,點A、B都在原點左邊,|AB|=|OA|-|OB|=|a|-|b|=-a-(-b)=b-a=|a-b|;③如圖4,點AB在原點兩邊,|AB|=|OB|+|OA|=|b|+|a|=a+(-b)=|a-b|

綜上所述,數(shù)軸上A、B兩點之間的距離表示為|AB|=|a-b|

回答下列問題:

1)數(shù)軸上表示25的兩點之間的距離是________,數(shù)軸上表示-2-5的兩點之間的距離是________,數(shù)軸上表示-25的兩點之間的距離是__________

2)數(shù)軸上表示x-1的兩點A、B之間的距離是__________,如果|AB|=2,則x_________;

3)當(dāng)代數(shù)式|x+1|+|x-2|取最小值時,相應(yīng)的x有的取值范圍是___________

 

答案:
解析:

1)3,3,7;(2)|x+1|,1或-3;(3)-1≤x≤2.

 


提示:

3)代數(shù)式取得的最小值為0,而在數(shù)軸上可看出只要x-12之間時代數(shù)式都為0

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線性質(zhì)定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
BD
DC
=
AB
AC

分析:要證
BD
DC
=
AB
AC
,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式
BD
DC
=
AB
AC
中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作C精英家教網(wǎng)E∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明
BD
DC
=
AB
AC
就可以轉(zhuǎn)化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA?
∠1=∠E
∠2=∠3
∠1=∠2
?∠E=∠3?AE=AC
,
CE∥DA?
BD
DC
=
BA
AE
AE=AC
?
BD
DC
=
AB
AC

(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個填在后面的括號內(nèi).精英家教網(wǎng)[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質(zhì)定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下面材料:
若A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點,證明直線x=
x1+x2
2
為此拋物線的對稱軸.
有一種方法證明如下:
①②
證明:∵A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點
y0=a
x
2
1
+bx1+c①
y0=a
x
2
2
+bx2+c②
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
x1+x2=-
b
a

又∵拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-
b
2a
,
∴直線x=
x1+x2
2
為此拋物線的對稱軸.
(1)反之,如果M(x1,y1),N(x2,y2) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點,直線x=
x1+x2
2
為該拋物線的對稱軸,那么自變量取x1,x2時函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
(2)利用以上結(jié)論解答下面問題:
已知二次函數(shù)y=x2+bx-1當(dāng)x=4時的函數(shù)值與x=2007時的函數(shù)值相等,求x=2012時的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下面材料:
, 是拋物線(a ≠ 0)上不同的兩點,證明直線為此拋物線的對稱軸.
有一種方法證明如下:



 
證明:∵,是拋物線(a ≠ 0)上不同的兩點,       

     ∴        且
①-②得 .
.
.
又∵ 拋物線(a ≠ 0)的對稱軸為,
∴ 直線為此拋物線的對稱軸.
(1)反之,如果, 是拋物線(a ≠ 0)上不同的兩點,直線為該拋物線的對稱軸,那么自變量取,時函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
(2)利用以上結(jié)論解答下面問題:
已知二次函數(shù)當(dāng)x = 4 時的函數(shù)值與x = 2007 時的函數(shù)值相等,求x = 2012時的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南通市如東縣九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

請閱讀下面材料:
若A(x1,y),B(x2,y) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點,證明直線為此拋物線的對稱軸.
有一種方法證明如下:
①②
證明:∵A(x1,y),B(x2,y) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.

又∵拋物線y=ax2+bx+c(a≠0)的對稱軸為
∴直線為此拋物線的對稱軸.
(1)反之,如果M(x1,y1),N(x2,y2) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點,直線為該拋物線的對稱軸,那么自變量取x1,x2時函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
(2)利用以上結(jié)論解答下面問題:
已知二次函數(shù)y=x2+bx-1當(dāng)x=4時的函數(shù)值與x=2007時的函數(shù)值相等,求x=2012時的函數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案