【題目】如圖,在等腰中,.點D,E分別在邊AB,BC上,將線段ED繞點E按逆時針方向旋轉(zhuǎn)90得到EF

1)如圖1,若,點E與點C重合,AFDC相交于點O.求證:

2)已知點GAF的中點.

①如圖2,若,求DG的長.

②若,是否存在點E,使得是直角三角形?若存在,求CE的長;若不存在,試說明理由.

【答案】1)見解析;(2存在,CE的長為:,2,.

【解析】

1)先證明CDBDAD,再證明,根據(jù)全等三角形的性質(zhì)可得,由此即可證得結(jié)論;(2分別過點D,F與點N,與點M,連接BF,先求得BF的長,再證明DG是△ABF的中位線,根據(jù)三角形的中位線定理即可求得DG的長;分∠DEG90°和∠EDG90°兩種情況求解即可.

解:(1)由旋轉(zhuǎn)性質(zhì)得:,

是等腰三角形,

,

中,

2)①如圖1,分別過點D,F與點N,與點M,連接BF,

,

,

,

D,G分別是ABAF的中點,

②過點D與點H

,

時,有如圖2,3兩種情況,設,

,,

E在線段AF上,

,

,,即,解得,

時,如圖4,

4

過點F與點K,延長DGAC于點N,延長AC并截取,連接FM,

,

,則,

,

,,得,

,

四邊形GECN是平行四邊形,

四邊形GECN是矩形, 時,有

時,如圖5,

5

過點G,F分別作AC的垂線,交射線AC于點N,M,過點E于點K,過點DGN的垂線,交NG的延長線于點P,則

,則,

可得:

,

可得:

解得,(舍去)

所以,CE的長為:,2,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,BMDN分別平分∠ABC,∠CDA,沿BP折疊,點A恰好落在BM上的點E處,延長PEDN于點F沿DQ折疊,點C恰好落在DN上的點G處,延長QGBM于點H,若四邊形EFGH恰好是正方形,且邊長為1,則矩形ABCD的面積為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為1,點OBC邊上的一個動點(與B,C不重合),以O為頂點在BC所在直線的上方作∠MON=90°

1)當OM經(jīng)過點A時,

①請直接填空:ON______(可能,不可能)過D點:(圖1僅供分析)

②如圖2,在ON上截取OE=OA,過E點作EF垂直于直線BC,垂足為點F,作EHCDH,求證:四邊形EFCH為正方形;

③如圖2,將②中的已知與結(jié)論互換,即在ON上取點EE點在正方形ABCD外部),過E點作EF垂直于直線BC,垂足為點F,作EHCDH,若四邊形EFCH為正方形,那么OEOA是否相等?請說明理由;

2)當點O在射線BC上且OM不過點A時,設OM交邊ABG,且OG=2.在ON上存在點P,過P點作PK垂直于直線BC,垂足為點K,使得SPKO=SOBG,連接GP,則當BO為何值時,四邊形PKBG的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價是80元/kg,銷售單價不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時間后得到如下數(shù)據(jù):

銷售單價x(元/kg)

120

130

180

每天銷量y(kg)

100

95

70

設y與x的關(guān)系是我們所學過的某一種函數(shù)關(guān)系.

(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;

(2)當銷售單價為多少時,銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2、圖3是某公共汽車雙開門的俯視示意圖,ME,EF,FN是門軸的滑動軌道,,兩門AB,CD的門軸A,B,C,D都在滑動軌道上,兩門關(guān)閉時圖2A,D分別在E,F處,門縫忽略不計(即B,C重合);兩門同時開啟,A,D分別沿,的方向勻速滑動,帶動B,C滑動;B到達E時,C恰好到達F,此時兩門完全開啟.已知.(1)如圖3,當時,______cm.(2)在(1)的基礎上,當AM方向繼續(xù)滑動15cm時,四邊形ABCD的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校研究學生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運動、娛樂、上網(wǎng)等四個方面調(diào)查了若干名學生的興趣愛好,并將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調(diào)查中,一共調(diào)查了   名學生;

(2)補全條形統(tǒng)計圖;

(3)若該校共有1500名學生,估計愛好運動的學生有   人;

(4)在全校同學中隨機選取一名學生參加演講比賽,用頻率估計概率,則選出的恰好是愛好閱讀的學生的概率是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0

(1)證明:無論m為何值方程都有兩個實數(shù)根;

(2)是否存在正數(shù)m,使方程的兩個實數(shù)根的平方和等于26?若存在,求出滿足條件的正數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】藝術(shù)節(jié)期間,學校向?qū)W生征集書畫作品,楊老師從全校36個班中隨機抽取了4 個班 (A,BC,D表示),對征集到的作品的數(shù)量進行了統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請 根據(jù)相關(guān)信息,回答下列問題:

1)請你將條形統(tǒng)計圖補充完整;并估計全校共征集了_____件作品;

2)如果全校征集的作品中有4件獲得一等獎,其中有3名作者是男生,1名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求選取的兩名學生恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有若干間標準房,當標準房的價格為200元時,每天入住的房間數(shù)為60間,經(jīng)市場調(diào)查表明,該賓館每間標準房的價格在170~240元之間(含170元,240元)浮動時,每天入住的房間數(shù)(間)與每間標準房的價格(元)的數(shù)據(jù)如下表:

(元)

190

200

210

220

()

65

60

55

50

1)根據(jù)所給數(shù)據(jù)在坐標系中描出相應的點,并畫出圖象.

2)求關(guān)于的函數(shù)表達式、并寫出自變量的取值范圍.

3)設客房的日營業(yè)額為(元).若不考慮其他因素,問賓館標準房的價格定為多少元時.客房的日營業(yè)額最大?最大為多少元?

查看答案和解析>>

同步練習冊答案