如圖,已知點(diǎn)F是正方形ABCD的邊BC的中點(diǎn),CG平分∠DCE,GF⊥AF.求證:AF=FG.
證明:取AB的中點(diǎn)M,連接FM.
∵點(diǎn)F是正方形ABCD的邊BC的中點(diǎn),
∴BF=BM,
∴∠BMF=45°,
∴∠AMF=135°.
∵CG平分∠DCE,
∴∠GCE=45°,
∴∠FCG=135°,
∴∠AMF=∠FCG.
∵∠B=90°,∴∠FAM=90°-∠AFB,
∵GF⊥AF,∴∠GFC=90°-∠AFB,
∴∠FAM=∠GFC.
在△FAM和△GFC中,
∠FAM=∠GFC
AM=FC
∠AMF=∠FCG
,
∴△FAM≌△GFC,
∴AF=FG.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,P是正方形ABCD內(nèi)一點(diǎn),在正方形ABCD外有一點(diǎn)E,滿足∠ABE=∠CBP,BE=BP.
(1)在圖中是否存在兩個(gè)全等的三角形,若存在請(qǐng)寫出這兩個(gè)三角形并證明;若不存在請(qǐng)說(shuō)明理由;
(2)若(1)中存在,這兩個(gè)三角形通過(guò)旋轉(zhuǎn)能夠互相重合嗎?若重合請(qǐng)說(shuō)出旋轉(zhuǎn)的過(guò)程;若不重合請(qǐng)說(shuō)明理由;
(3)PB與BE有怎樣的位置關(guān)系,說(shuō)明理由;
(4)若PA=1,PB=2,∠APB=135°,求AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正方形ABCD的對(duì)角線AC上有一點(diǎn)E,AE=AB,則∠ABE=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:正方形ABCD,以AD為邊作等邊三角形ADE,求∠BEC的度數(shù).(要求畫出圖形,再求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,且OA=OB=OC=OD=1,AB=
2
.四邊形ABCD是正方形嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED.延長(zhǎng)BE交AD于F,當(dāng)∠BED=120°時(shí),則∠EFD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長(zhǎng)線于點(diǎn)G,連接OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;
(3)若GE•GB=4-2
2
,求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,四邊形ABCD是正方形,點(diǎn)G是BC上任意一點(diǎn),DE⊥AG于點(diǎn)E,BF⊥AG于點(diǎn)F.
(1)求證:DE-BF=EF;
(2)當(dāng)點(diǎn)G為BC邊中點(diǎn)時(shí),試探究線段EF與GF之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若點(diǎn)G為CB延長(zhǎng)線上一點(diǎn),其余條件不變.請(qǐng)你在圖②中畫出圖形,寫出此時(shí)DE、BF、EF之間的數(shù)量關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中,不成立的是(  )
A.等腰梯形的兩條對(duì)角線相等
B.菱形的對(duì)角線平分一組對(duì)角
C.順次連接四邊形的各邊中點(diǎn)所得的四邊形是平行四邊形
D.兩條對(duì)角線互相垂直且相等的四邊形是正方形

查看答案和解析>>

同步練習(xí)冊(cè)答案