如圖,有一塊塑料矩形模板ABCD,長為10cm,寬為4cm,將你手中足夠大的直角三角板 PHF 的直角頂點P落在AD邊上(不與A、D重合),在AD上適當(dāng)移動三角板頂點P:

①能否使你的三角板兩直角邊分別通過點B與點C?若能,請你求出這時 AP 的長;若不能,請說明理由;

②再次移動三角板位置,使三角板頂點P在AD上移動,直角邊PH 始終通過點B,另一直角邊PF與DC的延長線交于點Q,與BC交于點E,能否使CE=2cm?若能,請你求出這時AP的長;若不能,請你說明理由.

 

【答案】

①能,AP=8或2;②能,AP=4

【解析】

試題分析:①設(shè)AP=x米,根據(jù)矩形的性質(zhì),在Rt△ABC、Rt△PDC、Rt△PBC中分別運(yùn)用勾股定理即可求得結(jié)果;

②仿照①即可求得結(jié)果。

①設(shè)AP=x米,由于BP2=16+x2,CP2=16+(10-x)2,

而在Rt△PBC中,有BP2+ CP2=BC2,即16+x2+16+(10-x)2=100,

所以x2-10x+16=0,即(x-5)2=9,所以x-5=±3,所以x=8,x=2,即AP=8或2;

②能.仿照①可求得AP=4.

考點:本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì)

點評:解答本題的關(guān)鍵是熟練掌握勾股定理,靈活選用合適的直角三角形。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一塊塑料矩形模板ABCD,長為10cm,寬為4cm,將你手中足夠大的直角三角板PHF的直角頂點P落在AD邊上(不與A、D重合),在AD上適當(dāng)移動三角板頂點P.
(1)能否使你的三角板兩直角邊分別通過點B與點C?若能,請你求出這時AP的長;若不能,請說明理由;
(2)再次移動三角板位置,使三角板頂點P在AD上移動,直角邊PH始終通過點B,另一直精英家教網(wǎng)角邊PF與DC延長線交于點Q,與BC交于點E,能否使CE=2 cm?若能,請你求出這時AP的長;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,有一塊塑料矩形模板ABCD,長為8cm,寬為4cm,將你手中足夠大的直角三角板PHF的直角頂點P落在AD邊上(不與A、D重合),在AD上適當(dāng)移動三角板頂點P:能否使你的三角板兩直角邊分別通過點B與點C?若能,請你求出這時AP的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(6分)如圖,有一塊塑料矩形模板ABCD,它的長為10cm,寬為4cm,一個足夠大的直角三角板PHF的直角頂點P落在AD邊上(不與A,D重合),在AD上適當(dāng)移動三角板頂點P.

(1)能否使三角板兩直角邊分別通過點B和點C?若能,請你求出這時AP的長;若不能,請說明理由.
(2)再次移動三角板位置,使三角板頂點P在AD上移動,直角邊PH始終通過點B,另一直角邊PF與DC延長線交于點Q,與BC交于點E,能否使CE="2" cm?若能,請你求出這時AP的長;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省湖州市潯溪中學(xué)八年級3月月考試數(shù)學(xué)卷 題型:解答題

(6分)如圖,有一塊塑料矩形模板ABCD,它的長為10cm,寬為4cm,一個足夠大的直角三角板PHF的直角頂點P落在AD邊上(不與A,D重合),在AD上適當(dāng)移動三角板頂點P.

(1)能否使三角板兩直角邊分別通過點B和點C?若能,請你求出這時AP的長;若不能,請說明理由.
(2)再次移動三角板位置,使三角板頂點P在AD上移動,直角邊PH始終通過點B,另一直角邊PF與DC延長線交于點Q,與BC交于點E,能否使CE="2" cm?若能,請你求出這時AP的長;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆浙江省湖州市八年級3月月考試數(shù)學(xué)卷 題型:解答題

(6分)如圖,有一塊塑料矩形模板ABCD,它的長為10cm,寬為4cm,一個足夠大的直角三角板PHF的直角頂點P落在AD邊上(不與A,D重合),在AD上適當(dāng)移動三角板頂點P.

(1)能否使三角板兩直角邊分別通過點B和點C?若能,請你求出這時AP的長;若不能,請說明理由.

(2)再次移動三角板位置,使三角板頂點P在AD上移動,直角邊PH始終通過點B,另一直角邊PF與DC延長線交于點Q,與BC交于點E,能否使CE=2 cm?若能,請你求出這時AP的長;若不能,請你說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案