一個長方形的兩條邊長分別是2cm和xcm,在長方形內畫一個面積最大的圓,求這個圓的面積.

答案:
解析:

x2時,;x2時,


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某建筑工地旁有一堵長為90米的圍墻,工程隊打算用120米長的鐵柵欄靠墻圍一個所占地面為長方形的臨時倉庫,鐵柵欄只圍三邊.(如圖所示)
(1)如果長方形的面積是1152平方米,求長方形的兩條鄰邊的長;
(2)若與墻垂直的一邊AB長用x表示,長方形ABCD的面積用y表示,寫出y關于x的函數(shù)解析式及函數(shù)的定義域.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

三個牧童A,B,C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內,各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊全等的長方形,大家分頭守在這三個長方形的中心(對角線交點),看守自己的一塊牧場.
過了一段時間,牧童B和牧童C又分別提出里新的劃分方案.
牧童B的劃分方案如圖2:三塊長方形的面積相等,牧童的位置在三個小長方形的中心.
牧童C的劃分方案如圖3:把正方形的牧場分成三塊長方形,牧童的位置在三個小長方形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:

(I)長方形的兩條對角線是相等且互相平分的嗎?
(II)牧童B的劃分方案中,哪個牧童在有情況時所需走的最大距離較遠?
(III)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某建筑工地旁有一堵長為90米的圍墻,工程隊打算用120米長的鐵柵欄靠墻圍一個所占地面為長方形的臨時倉庫,鐵柵欄只圍三邊.(如圖所示)
(1)如果長方形的面積是1152平方米,求長方形的兩條鄰邊的長;
(2)若與墻垂直的一邊AB長用x表示,長方形ABCD的面積用y表示,寫出y關于x的函數(shù)解析式及函數(shù)的定義域.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

三個牧童A,B,C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內,各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊全等的長方形,大家分頭守在這三個長方形的中心(對角線交點),看守自己的一塊牧場.
過了一段時間,牧童B和牧童C又分別提出里新的劃分方案.
牧童B的劃分方案如圖2:三塊長方形的面積相等,牧童的位置在三個小長方形的中心.
牧童C的劃分方案如圖3:把正方形的牧場分成三塊長方形,牧童的位置在三個小長方形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:

(I)長方形的兩條對角線是相等且互相平分的嗎?
(II)牧童B的劃分方案中,哪個牧童在有情況時所需走的最大距離較遠?
(III)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

同步練習冊答案