【題目】韋達(dá)定理:若一元二次方程ax2+bx+c=0(a≠0)的兩根分別為x1、x2 , 則x1+x2=﹣ , x1x2= , 閱讀下面應(yīng)用韋達(dá)定理的過(guò)程:
若一元二次方程﹣2x2+4x+1=0的兩根分別為x1、x2 , 求x12+x22的值.
解:該一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0
由韋達(dá)定理可得,x1+x2=﹣=﹣=2,x1x2===﹣
x12+x22=(x1+x2)2﹣2x1x2
=22﹣2×(﹣)
=5
然后解答下列問(wèn)題:
(1)設(shè)一元二次方程2x2+3x﹣1=0的兩根分別為x1 , x2 , 不解方程,求x12+x22的值;
(2)若關(guān)于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的兩根分別為α,β,且α2+β2=4,求k的值.
【答案】解:(1)∵一元二次方程的△=b2﹣4ac=32﹣4×2×(﹣1)=17>0,
由根與系數(shù)的關(guān)系得:x1+x2=﹣ , x1x2=﹣ ,
∴+x22=(x1+x2)2﹣2x1x2==;
(2)由根與系數(shù)的關(guān)系知:=﹣k﹣1,αβ==k﹣1,
α2+β2=((α+β)2﹣2αβ=(k+1)2﹣2(k﹣1)=k2+3
∴k2+3=4,
∴k=±1,
∵k﹣1≠0
∴k≠1,
∴k=﹣1,
將k=﹣1代入原方程:﹣2x2+4=0,
△=32>0,
∴k=﹣1成立,
∴k的值為﹣1.
【解析】(1)先根據(jù)根與系數(shù)的關(guān)系得到x1+x2=﹣ , x1x2=﹣ , 再利用完全平方公式變形得到x12+x22=(x1+x2)2﹣2x1x2 , 然后利用整體代入的方法計(jì)算即可;
(2)根據(jù)一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的兩根分別為α,β,求出兩根之積和兩根之和的關(guān)于k的表達(dá)式,再將α2+β2=4變形,將表達(dá)式代入變形后的等式,解方程即可.
【考點(diǎn)精析】掌握根與系數(shù)的關(guān)系是解答本題的根本,需要知道一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程m2x2+(4m﹣1)x+4=0的兩個(gè)實(shí)數(shù)根互為倒數(shù),那么m的值為( 。
A.2
B.-2
C.±2
D.±
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.
(1)求證:無(wú)論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實(shí)數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】筆尖在紙上寫字說(shuō)明;車輪旋轉(zhuǎn)時(shí)看起來(lái)象個(gè)圓面,這說(shuō)明;一枚硬幣在光滑的桌面上快速旋轉(zhuǎn)形成一個(gè)球,這說(shuō)明 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一粒木質(zhì)中國(guó)象棋棋子“車”,它的正面雕刻一個(gè)“車”字,它的反面是平的,將棋子從一定高度下拋,落地反彈后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的兩面不均勻,為了估計(jì)“車”字朝上的機(jī)會(huì),某實(shí)驗(yàn)小組做了棋子下拋實(shí)驗(yàn),并把實(shí)驗(yàn)數(shù)據(jù)整理如下:
實(shí)驗(yàn)次數(shù) | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“車”字朝上的頻數(shù) | 14 | 18 | 38 | 47 | 52 |
| 78 | 88 |
相應(yīng)的頻率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.55 | 0.56 |
|
(1)請(qǐng)將表中數(shù)據(jù)補(bǔ)充完整,并畫出折線統(tǒng)計(jì)圖中剩余部分.
(2)如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),這個(gè)實(shí)驗(yàn)的頻率將接近于該事件發(fā)生的機(jī)會(huì),請(qǐng)估計(jì)這個(gè)機(jī)會(huì)約是多少?
(3)在(2)的基礎(chǔ)上,進(jìn)一步估計(jì):將該“車”字棋子,按照實(shí)驗(yàn)要求連續(xù)拋2次,則剛好使“車”字一次字面朝上,一次朝下的可能性為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】a、b為有理數(shù),現(xiàn)在規(guī)定一種新的運(yùn)算“⊕”,如a⊕b=﹣ab+a2﹣1,則(2⊕3)⊕(﹣3)=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有850名學(xué)生參加了這次競(jìng)賽,為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部污染的頻率分布表和頻率分布直方圖,解答下列問(wèn)題:
分 組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合 計(jì) | 50 | 1.00 |
(1)填充頻率分布表的空格;
(2)補(bǔ)全頻數(shù)直方圖,并在此圖上直接繪制頻數(shù)分布折線圖;
(3)全體參賽學(xué)生中,競(jìng)賽成績(jī)落在哪組范圍內(nèi)的人數(shù)最多?
(4)若成績(jī)?cè)?/span>90分以上(不含90分)為優(yōu)秀,則該校成績(jī)優(yōu)秀的約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】sin65°與cos26°之間的關(guān)系為( )
A.sin65°<cos26°B.sin65°>cos26°
C.sin65°=cos26°D.sin65°+cos26°=1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com