【題目】某蔬菜加工公司先后兩批次收購蒜薹(tái)共100噸.第一批蒜薹價格為4000元/噸;因蒜薹大量上市,第二批價格跌至1000元/噸.這兩批蒜薹共用去16萬元.
(1)求兩批次購進(jìn)蒜薹各多少噸;
(2)公司收購后對蒜薹進(jìn)行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應(yīng)為多少噸?最大利潤是多少?
【答案】(1)第一批購進(jìn)蒜薹20噸,第二批購進(jìn)蒜薹80噸(2)精加工數(shù)量為75噸時,獲得最大利潤,最大利潤為85000元
【解析】試題分析:(1)設(shè)第一批購進(jìn)蒜薹x噸,第二批購進(jìn)蒜薹y噸.構(gòu)建方程組即可解決問題.
(2)設(shè)精加工m噸,總利潤為w元,則粗加工噸.由m≤3,解得m≤75,利潤w=1000m+400=600m+40000,構(gòu)建一次函數(shù)的性質(zhì)即可解決問題.
試題解析:(1)設(shè)第一批購進(jìn)蒜薹x噸,第二批購進(jìn)蒜薹y噸.
由題意,
解得,
答:第一批購進(jìn)蒜薹20噸,第二批購進(jìn)蒜薹80噸.
(2)設(shè)精加工m噸,總利潤為w元,則粗加工噸.
由m≤3,解得m≤75,
利潤w=1000m+400=600m+40000,
∵600>0,
∴w隨m的增大而增大,
∴m=75時,w有最大值為85000元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商從批發(fā)市場用8000元購進(jìn)了大櫻桃和小櫻桃各200千克,大櫻桃的進(jìn)價比小櫻桃的進(jìn)價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.
(1)大櫻桃和小櫻桃的進(jìn)價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?
(2)該水果商第二次仍用8000元錢從批發(fā)市場購進(jìn)了大櫻桃和小櫻桃各200千克,進(jìn)價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)媒體公布,我國國防科技大學(xué)研制的“天河二號”以每秒3386×1013次的浮點運算速度第五次蟬聯(lián)冠軍,已知3386×1013的結(jié)果近似為3430000,用科學(xué)記數(shù)法把近似數(shù)3430000表示成a×10n的形式,則n的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個數(shù)絕對值之差為0,則這兩個數(shù)( )
A.相等
B.互為相反數(shù)
C.都為0
D.相等或互為相反數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)
(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組要測量一棟五層居民樓CD的高度.該樓底層為車庫,高2.5米;上面五層居住,每層高度相等.測角儀支架離地1.5米,在A處測得五樓頂部點D的仰角為60°,在B處測得四樓頂部點E的仰角為30°,AB=14米.求居民樓的高度(精確到0.1米,參考數(shù)據(jù): ≈1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過多邊形的一個頂點的所有對角線把多邊形分成9個三角形,這個多邊形的邊數(shù)是 ( )
A. 10 B. 11 C. 12 D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC的外側(cè)作直線BM,點A關(guān)于直線BM的對稱點為D,連結(jié)AD,CD,設(shè)CD交直線BM于點E.
(1)依題意補全圖1,若∠ABM=30°,求∠BCE的度數(shù);
(2)如圖2,若60°<∠ABM<90°,判斷直線BM和CD相交所成的銳角的度數(shù)是否為定值?若是,求出這個銳角的度數(shù);若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,已知等腰直角三角形,點是斜邊上一點(不與重合),是的外接圓⊙的直徑.
(1)求證:是等腰直角三角形;
(2)若⊙的直徑為2,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com