【題目】某廠家為了解銷售轎車臺數(shù)與廣告宣傳費之間的關(guān)系,得到如表統(tǒng)計數(shù)據(jù)表:根據(jù)數(shù)據(jù)表可得回歸直線方程 ,其中 , ,據(jù)此模型預測廣告費用為9萬元時,銷售轎車臺數(shù)為(

廣告費用x(萬元)

2

3

4

5

6

銷售轎車y(臺數(shù))

3

4

6

10

12


A.17
B.18
C.19
D.20

【答案】C
【解析】解:根據(jù)表中數(shù)據(jù),計算 = ×(2+3+4+5+6)=4,
= ×(3+4+6+10+12)=7,
且回歸直線方程為 =2.4x+
=7﹣2.4×4=﹣2.6,
∴回歸方程為 =2.4x﹣2.6;
當x=9時, =2.4×9﹣2.6=19,
即據(jù)此模型預測廣告費用為9萬元時,銷售轎車臺數(shù)為19.
故選:C.
根據(jù)表中數(shù)據(jù)計算 、 ,由回歸直線方程過樣本中心點求出 的值,寫出回歸方程,利用回歸方程計算x=9時 的值即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在四棱柱ABCD﹣A1B1C1D1中,四邊形ABCD為平行四邊形,AA1⊥平面ABCD,∠BAD=60°,AB=2,BC=1.AA1= ,E為A1B1的中點.
(1)求證:平面A1BD⊥平面A1AD;
(2)求多面體A1E﹣ABCD的體積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人投擲飛鏢,他們的成績(環(huán)數(shù))如下面的頻數(shù)條統(tǒng)計圖所示.則甲、乙、丙三人的訓練成績方差S2 , S2 , S2的大小關(guān)系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知曲線C上任意一點M到點F(0,1)的距離比它到直線l:y=﹣2的距離小1. (Ⅰ)求曲線C的方程;
(Ⅱ)斜率不為0且過點P(2,2)的直線m與曲線C交于A,B兩點,設 ,當△AOB的面積為4 時(O為坐標原點),求λ的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區(qū)開設分店.為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設分店的個數(shù),y表示這x個分店的年收入之和.

x(個)

2

3

4

5

6

y(百萬元)

2.5

3

4

4.5

6

(Ⅰ)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程y= ;
(Ⅱ)假設該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為z=y﹣0.05x2﹣1.4,請結(jié)合(Ⅰ)中的線性回歸方程,估算該公司應在A區(qū)開設多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?
參考公式: = x+a, = = ,a=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線E:y2=x與圓M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四個點.
(Ⅰ)求r的取值范圍;
(Ⅱ)當四邊形ABCD的面積最大時,求對角線AC、BD的交點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面給出四種說法: ①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p,則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( ).
其中正確的說法有(請將你認為正確的說法的序號全部填寫在橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為矩形,AB= ,AA1=2,D為AA1的中點,BD與AB1交于點O,CO⊥側(cè)面ABB1A1
(1)證明:CD⊥AB1;
(2)若OC=OA,求直線C1D與平面ABC所成角的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(列方程(組)及不等式解應用題)
春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.

查看答案和解析>>

同步練習冊答案