【題目】如圖,拋物線y=ax2+bx-3a經(jīng)過A(-1,0),C(0,-3)兩點,與x軸交于另一點B.

(1)求此拋物線的表達(dá)式;

(2)已知點D(m,-m-1)在第四象限的拋物線上,求點D關(guān)于直線BC對稱的點D′的坐標(biāo);

(3)在(2)的條件下,連接BD.問在x軸上是否存在點P,使∠PCB=∠CBD?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.

【答案】(1) y=x2-2x-3;(2) (0,-1);(3) P的坐標(biāo)為(1,0)或(9,0).

【解析】

(1)將A(1,0)、C(0,3)兩點坐標(biāo)代入拋物線y=ax2+bx3a中,列方程組求a、b的值即可;

(2)將點D(m,m1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點D關(guān)于直線BC對稱的點D'的坐標(biāo);

(3)分兩種情形①過點CCPBD,交x軸于P,則∠PCB=CBD,②連接BD′,過點CCP′BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.

(1)A(-1,0),C(0,-3)代入拋物線y=ax2+bx-3a中,

,

解得,

y=x2-2x-3;

(2)將點D(m,-m-1)代入y=x2-2x-3中,得m2-2m-3=-m-1.

解得m=2或-1,

∵點D(m,-m-1)在第四象限,

D(2,-3),

∵直線BC的表達(dá)式為y=x-3,

∴∠BCD=BCO=45°,CD′=CD=2,OD′=3-2=1.

∴點D關(guān)于直線BC對稱的點D′的坐標(biāo)為(0,-1),

(3)存在,滿足條件的點P有兩個

①過點CCPBD,交x軸于點P,則∠PCB=CBD,

∵直線BD的表達(dá)式為y=3x-9,直線CP過點C,

∴直線CP的表達(dá)式為y=3x-3.

∴點P的坐標(biāo)為(1,0);

②連接BD′,過點CCP′BD′,交x軸于點P′,

則∠P′CB=D′BC,

根據(jù)對稱性可知∠D′BC=CBD,

∴∠P′CB=CBD,

∵直線BD′的表達(dá)式為y=x-1,直線CP′過點C,

∵直線CP′的表達(dá)式為y=x-3,

∴點P′的坐標(biāo)為(9,0),

綜上所述,滿足條件的點P的坐標(biāo)為(1,0)(9,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為,點的坐標(biāo)為,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點;按此做法進行下去,其中的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是一片水田,某村民小組需計算其面積,測得如下數(shù)據(jù):∠A=90°,∠ABD=60°,∠CBD=54°,AB=200 m,BC=300 m.請你計算出這片水田的面積.(參考數(shù)據(jù):sin 54°≈0.809,cos 54°≈0.588,tan 54°≈1.376,=1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BD、BE分別是高和角平分線,點F在CA的延長線上,F(xiàn)H⊥BE交BD于G,交BC于H,下列結(jié)論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C.

其中正確的是( 。

A.①②③B.①③④C.①②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24 m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設(shè)平行于墻的邊長為x m.

(1)設(shè)垂直于墻的一邊長為y m,直接寫出y與x之間的函數(shù)關(guān)系式;

(2)若菜園面積為384 m2,求x的值;

(3)求菜園的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生課余活動情況,某校對參加繪畫、書法、舞蹈、樂器這四個課外興趣小組的人員分布情況進行抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下面的問題:

(1)此次共調(diào)查了多少名同學(xué)?

(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中書法部分的圓心角的度數(shù);

(3)如果該校共有1000名學(xué)生參加這4個課外興趣小組,而每個教師最多只能輔導(dǎo)本組的20名學(xué)生,估計每個興趣小組至少需要準(zhǔn)備多少名教師?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,,CDAB邊上中線,ECB邊上的一個動點.

CD的長;

如圖1,連接AE,交CD于點F,當(dāng)AE平分時,求CE,CF的長;

如圖2,連接DE,將沿DE翻折至,連接BG,直接寫出間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,,,繞點C旋轉(zhuǎn),角的兩邊分別與AB、AD交于點E、F,同時也分別與DA、BA的延長線交于點G、H.

如圖1,若

求證:;

繞點C旋轉(zhuǎn)的過程中,線段AC、AG、AH之間存在著怎樣的數(shù)量關(guān)系?并說明理由.

如圖2,若,經(jīng)探究得的值為常數(shù)k,求k的值.

查看答案和解析>>

同步練習(xí)冊答案